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Abstract 

In this paper, an imaginary-part BEM for solving the eigenfrequencies of plates is proposed for avoiding singularity and saving half effort in 

computation instead of using the complex-valued BEM. By employing the imaginary-part fundamental solution, the spurious eigenequations in 

conjunction with the true eigenequation are obtained for free vibration of plate. To verify this finding, the circulant is adopted to analytically derive 

the true and spurious eigenequations in the discrete system of a circular plate. In order to obtain the eigenvalues and boundary modes at the same time, 

the singular value decomposition (SVD) technique is utilized. The analytical solutions are derived in the discrete system. Three cases, clamped, 

simply-supported and free circular plates, are demonstrated analytically and numerically to see the validity of the present method. SVD updating 

technique is adopted to suppress the ocurrence of the spurious eigenvalues, and a clamped plate is demonstrated analytically for the discrete system in 

this paper. 

Keywords: Imaginary-part BEM, Plate vibration, Spurious eigenvalue, Circulant, Degenerate kernel, SVD updating technique. 

 

1. Introduction 
For the simply-connected problems of interior acoustics and 

membrane, either the real-part or imaginary-part BEM results in 

spurious eigenequations. Tai and Shaw [23] first employed BEM to 

solve membrane vibration using a complex-valued kernel. De Mey [10, 

11], Hutchinson and Wong [13] employed only the imaginary-part 

kernel to solve the membrane and plate vibrations free of the 

complex-valued computation in sacrifice of occurrence of spurious 

eigenvalues. Kamiya et al. [17, 18] and Yeih et al. [24] linked the 

relation of MRM and imaginary-part BEM independently. Wong and 

Hutchinson [14] have presented a direct BEM for plate vibration 

involving displacement, slope, moment and shear force. They were able 

to obtain numerical results for the clamped plates by employing only the 

imaginary-part BEM with obvious computational gains. However, this 

saving leads to the spurious eigenvalues in addition to the true ones in 

free vibration analysis. One has to investigate the mode shapes in order 

to identify and reject the spurious ones. Shaw [22] commented that only 

the imaginary-part approach was incorrect since the eigenequation must 

satisfy the real-part and imaginary-part equations at the same time. 

Hutchinson [14] replied that the claim of incorrectness was perhaps a 

little strong since the imaginary-part BEM does not miss any true 

eigenvalue although the solution is contaminated by spurious ones 

according to his numerical experience. If we need to look for the 

eigenmode as well as eigenvalue as usual, the sorting for the spurious 

eigenequations pays a small price by identifying the mode shapes. Chen 

et al. [3] commented that the spurious modes can be reasonable which 

may mislead the judgement of the true and spurious ones, since the true 

and spurious modes may have the same nodal line in case of different 

eigenvalues. This is the reason why Chen et al. have developed many 

systematic techniques [2, 3, 4, 5, 6,7], for sorting out the true and the 

spurious eigenvalues. Niwa et al. [21] also stated that ``One must take 

care to use the complete Green's function for outgoing waves, as 

attempts to use just the real (singular) or imaginary (regular) part 

separately will not provide the complete spectrum". As quoted from the 

reply of Hutchinson [13], this comment is not correct since the real-part 

BEM does not lose any true eigenvalue. The reason is that the real and 

imaginary-part kernels satisfy the Hilbert transform pair. Complete 

eigenspectrum is imbedded in either one, real or imaginary-part kernel. 

The Hilbert transform is the constraint in the frequency-domain  

fundamental solution corresponding to the casual effect in the 

time-domain fundamental solution. The physical meaning of the 

imaginary-part kernel is the standing wave [12]. Tai and Shaw [23] 

claimed that spurious eigenvalues are not present if the complex-valued 

kernel is employed for the eigenproblem. However, it is true only for the 

case of problem with a simply-connected domain [9, 10]. For 

multiply-connected problems, spurious eigenequation occur even though 

the complex-valued BEM is utilized. 

In this paper, the spurious eigenequation for the plate eigenproblem 

will be studied in the imaginary-part BEM. First of all, the true and 

spurious eigenvalues will be examined for the simply-connected plate 

using the imaginary-part BEM. Since any two boundary integral 

equations in the plate formulation (4 equations) can be chosen, 6 ( ) 

options can be considered. The occurring mechanism for the spurious 

eigenequation in the plate eigenproblem in each formulation will be 

studied analytically in the discrete system. For the discrete system, the 

degenerate kernels for the fundamental solution and circulants resulting 

from the circular boundary will be employed to determine the spurious 

eigenequation. Three types of plates subject to clamped, 

simply-supported and free boundary conditions will be illustrated to 

check the validity of the present formulations. Also, the SVD updating 
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technique is adopted to suppress the ocurrence of the spurious 

eigenvalues for the free vibration of plate problem, and a clamped plate 

is demonstrated analytically for the discrete system in this paper. 

 

2. Boundary integral equations for plate 
eigenproblems 
The governing equation for free flexural vibration of a uniform thin 

plate is written as follows: 

Ω∈=∇ xxuxu ),()( 44 λ  (1)

where  is the lateral displacement, , u Dh /0
24 ρωλ = λ  is the 

frequency parameter, ω  is the circular frequency, 0ρ  is the surface 

density,  is the flexural rigidity expressed as  

in terms of Young's modulus , Poisson ratio 

D )/ 2ν−1(123= EhD

E ν , and the plate 

thickness , and  is the domain of the thin plate. The integral 

equations for the domain point can be derived from the Rayleigh-Green 

identity [24] as follows: 
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where  is the boundary, u , B θ ,  and   mean the 

displacement, slope, normal moment, effective shear force, 

m v

s  and x  

are the source and field points, respectively, U , ,  and V  

kernel functions will be elaborated on later. By moving the field point to 

the boundary, Eqs.(2)-(5) reduce to 
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where  denotes the principal value, and ..VP 2/1=α  for a smooth 

boundary point. We consider only the imaginary-part kernel function 

 of the fundamental solution  which satisfies ),( xsU ),( xsUc

)(),(),( 44 sxxsUxsU cc −=−∇ δλ  (10)

where )( xs −δ  is the Dirac-Delta function. Considering the two 

singular solutions (  and , which are the zeroth-order of 

second kind Bessel and modified Bessel functions, respectively) [14] 

and two regular solutions (  and , which are the 

zeroth-order of the first kind Bessel and modified Bessel functions, 

respectively) in the fundamental solution, we have 
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where  and n t  are the normal vector and tangential vector, 

respectively. The operators ,  and  can be applied to , θK mK vK U

Θ ,  and V kernels. The kernel functions can be expressed as: M
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The displacement, slope, normal moment and effective shear force are 

derived by 
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Once the field point x  locates outside the domain, the null-field BIEs 

of the direct method in Eqs.(6)-(9) yield 
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where  is the complementary domain. Note that the null-field BIEs 

are not singular, since 

eΩ

x  and s  never coincide. 

When the boundary is discretized into  constant elements, the 

linear algebraic equations of Eqs.(6)-(9) can be obtained as follows: 
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3. Mathematical analysis for the true and spurious 
eigensolutions 

Case 1. Clamped circular plate 

For the clamped circular plate ( 0=u  and 0=θ ) with a radius , 

Eqs.(29) and (30) can be rewritten as 

a
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For the existence of nontrivial solution of , the determinant of the 

matrix versus eigenvalue must be zero. 
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Since the rotation symmetry is preserved for a circular boundary, the 

influence matrices for the discrete system are found to be circulants with 

the following forms into Eq.(33), we have  

NNN

NNN

NN

N

zzzzz

zzzz
zzzz
zzzz

U

22012321

3201222

221012

12210

][

×−

−−−

−−

−























=
MOMMM

L

L

L

 (37)

The coefficients of each element can be obtained by using degenerate 

kernel 

12,...,2,1,0

,),,,()],,,([
)

2
1

(

)
2
1

(

−=

∆−≈−= ∫
∆+

∆−

Nm

aaaUdaaaUz m

m

m
m φφφφφφ

φ

φ  (38)

where N2/2πφ =∆ , φφ ∆= mm

),( xsθΘ
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where  and  denote the mth-order Bessel and modified Bessel 

functions of the first kind. The superscripts ``  '' and ``  '' denote 

the interior point (

mJ mI

i e
ρ>ρ ) and the exterior point ( ρρ < ), ),( φρ=s  

and ),( φρ=x  are the polar coordinates of s  and x , respectively. In 

this case, a=

2] N
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 for the circular plate with a radius . Similarly, 

the other kernels can also be expanded into degenerate forms. By 

introducing the following bases for circulants, , , , 

,…, , we can expand matrix  into 
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Based on the similar properties for the matrices of  and [ , 

we have 
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where  and  are the eigenvalues for [  and , 

respectively. It is easily found that the eigenvalues for the circulants 

, are the roots for  as shown below: 
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Substituting Eq.(44) into Eq.(43), we have 
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According to the definition for  in Eq.(38), we have mz
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Substituting Eq.(38) into Eq.(48) for 0=φ  without loss of generality, 

the Riemann sum of infinite terms reduces to the following integral 

The 11th National Conference on Society of Sound and Vibration, Keelung, Taiwan, ROC (July, 2003) 
45



第十一屆中華民國振動與噪音工程學術研討會 基隆 中華民國九十二年七月 

φφφ

φφµ

π
daaaU

aaUm m

N

m
N

U

∫

∑
−≈

−∆=
−

=
∞→

2

0

12

0

][

)]0,;,()[cos(

)]0,;,([)cos(lim

l

ll

 (49)

By using the degenerate kernel for U  and the orthogonal 

conditions of Fourier series, Eq.(49) reduces to 
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where ,  and  are the eigenvalues of ,  and 

matrices, respectively. Since the four matrices , ] ,  

and  are all symmetric circulants, they can be expressed by 
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By employing Eqs.(54)-(57) for Eq.(36), we have 
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Eq.(59) can be reformulated into 
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0
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0
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Since Φ  is orthogonal ( 1detdet 1 =Φ=Φ − ), the determinant of 

 is N
cSM[ N 44] ×
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By employing Eqs.(50)-(53) for Eq.(61), we have 
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 (62)

Eq.(62) can be simplified into 

)}()()()({

)]()()()([
8

]det[

11

)1(
112

22

aJaIaJaI

aJaIaJaIaSM
N

N

c

λλλλ

λλλλ
λ

π

++

−−=
++

+

−= ∏
llll

l

llll  (63)

Zero determinant in Eq.(63) implies that the eigenequation is 
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After comparing with the analytical solution for the clamped circular 

plate [19], the true eigenequation for a continuous system can be 

obtained by approaching  in the the discrete system to infinity. The 

former part in the middle bracket of Eq.(64) is the spurious 

eigenequation while the latter part in the big bracket is found to be the 

true eigenequation. In this case, it is interesting to find that the true and 

spurious eigenequation are the same. We can also comment that no 

spurious eigenvalue occurs although the spurious multiplicity appears. 

N

  

Case 2. Simply-supported circular plate 

For the simply-supported circular plate (  and 0=u 0=m ) with a 

radius , we have a

NN

s

MU
MU

SM
44

][
×


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




=

θθ

 (65)

where the superscript `` s '' denotes the simply-supported case. Since the 

rotation symmetry is preserved for a circular boundary, the eigenvalues 

of the influence matrices for the discrete system can be found by using 

circulants, we have 
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where  and  are the eigenvalues of [  and 

matrices, respectively, and 
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Since the two matrices [  and are all symmetric circulants, 

they can be expressed by 

]M ][ θM

T
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T
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θθ ][  (71)

By employing Eqs.(54), (56), (70) and (71) for Eq.(65), we have 
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Since  is orthogonal, the determinant of  is Φ NN
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By employing Eqs.(50), (52), (66) and (67) for Eq.(73), we have 
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Eq.(74) can be simplified into 

)}()(2)()()()()1{(

)]()()()([
8

]det[

11

)1(
112

aJaaIaJaIaJaI

aJaIaJaIaSM
N

N

s

λλλλλλλν

λλλλ
λ
π

llllll

l

llll

−+−

−=

++

−−=
++∏ (75)

Zero determinant in Eq.(75) implies that the eigenequation is 
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After comparing with the analytical solution for the simply-supported 

circular plate [19], the true eigenequation for a continuous system can be 

obtained by approaching  in the discrete system to infinity. The 

former part in Eq.(76) inside the middle bracket is the spurious 

eigenequation while the latter part inside the big bracket is found to be 

the true eigenequation. 

N

  

Case 3. Free circular plate 

For the free circular plate (  and ) with a radius , we 

have 

0=m 0=v a
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where the superscript `` '' denotes the free case. Since the rotation 

symmetry is preserved for a circular boundary, the eigenvalues of the 

influence matrices for the discrete system can be found by using 

circulants, we have 
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where  and  are the eigenvalues of  and [ matrices, 

respectively, and 
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Since the two matrices  and are all symmetric circulants, they 

can be expressed by 
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T
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T
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By employing Eqs.(70), (71), (84) and (85) for Eq.(77), we have 
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Since Φ  is orthogonal, the determinant of  is NN
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By employing Eqs.(66), (67), (78) and (79) for Eq.(87), we have 
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Eq.(88) can be simplified into 
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Zero determinant in Eq.(89) implies that the eigenequation is 
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After comparing with the analytical solution for the free circular plate 

[19], the true eigenequation for a continuous system can be obtained by 

approaching  in the discrete system to infinity. The former part in 

Eq.(90) inside the middle bracket is the spurious eigenequation while the 

latter part inside the big bracket is the true eigenequation. After 

comparing Eq.(64) with Eqs.(76) and (90), the same spurious 

eigenequation  is embedded 

in the , 

N

([ )0)]()()()( 11 =+ ++ aJaIaJaI λλλλ llll

u θ  formulation no matter what the boundary condition is. 

This reconfirms that spurious eigenequation depends on the formulation 

instead of the specified boundary condition. It is noted that the true 

eigenequation of free plate does not agree with that of the Leissa result 

[19]. However, the same true eigenvalues are obtained numerically 

between the present and Leissa's results. After finding the eigenvalues 

according to the Leissa's eigenequation, the eigenvalues are not 

consistent in his book. The possible explanation is that the eigenequation 

in the Leissa's book for the free case was wrongly typed. After careful 

check, the eigenequation in the Leissa's book was a misprint where the 

I  index in the numerator of the right hand side of the equation should 

be . J
Since any two equations in the plate formulation (Eqs.(29)-(32)) can be 

chosen, 6 ( ) options of the formulation can be considerd. If we 

choose different formulae for either one of the the clamped, 

simply-supported or free circular plate cases, we can obtain the same 

true eigenequation but different spurious eigensolutions. At the same 

time, either clamped or simply-supported circular plate results in the 

same spurious eigenequation, once we use the same formulation. The 

occurrence of spurious eigensolution only depends on the formulation 

instead of the boundary condition. True eigenequation depends on the 

specified boundary condition instead of the formulation. All the spurious 

eigenequations are summarized in Table 1 for the six formulations. 

4
2C

 

4. Extraction of the true eigenvalues using SVD 
updating technique in the discrete system 
A conventional approach to detect the nonunique solution is the 

criterion of satisfying all Eqs.(29)-(32) at the same time. For the 

clamped plate  (  and 0=u 0=θ ), the Eqs.(29)-(32) reduce to 
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After rearranging the terms, Eqs.(91) and (92) can be assembled to 
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Similarly, Eqs.(93) and (94) yield 
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Since the imaginary-part BEM misses the real-part information, we can 

reconstruct the independment equation by differentiation. To obtain an 

overdetermined system, we can combine Eqs.(95) and (97) by using the 

updating term, 
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Since the eigenequation is nontrival, the rank of the matrix [ ]C  must 

be smaller then , the  singular values for the matrix N4 N4 [ ]  
must have at least one zero value. The explicit form for the matrix 
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Based on the equivalence between the SVD technique and the 

least-squares method in mathematical essence, the least square form 

leads to 

[ ] [ ]
T

NN
T DCC 








Φ

Φ








Φ

Φ
= × 0

0
0

0
][ 44  (102)

where 

.][





















∑∑
∑∑
∑∑
∑∑












∑∑∑∑
∑∑∑∑

=

Θ

Θ

Θ

Θ

ΘΘΘΘ

vvU

mmU

U

U

vm

vUmUUUD θ

θ

θθ  (103)

If the determinant of the matrix [ ] [ ]CC T  is zero, we can obtain the 

nontrival solution. Since Φ  is orthogonal, the determinant of the 

matrix [ ] [ ]CC T  is equal to the determinant of the matrix [ ]D . By 
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calculating the determinant of the matrix , we have [ ]D
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where , ,  and [ ]U
lζ
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 are the eigenvalues of the 

matrices , ,  and , respectively. The only 

possibility for the zero determinant of the matrix  occurs when the 

six terms , 
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 are all zeros at the same time for the same . 

Here we can find that the six terms result in the six different spurious 

eigenequations as shown in Table 1, and the same true eigenequation is 

commonly imbedded in the six formulations. The only possibility for the 

zero determinant of the matrix  is only the common term (true 

eigenequation) to be zero, such that 

[ ]( U
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lδ l
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NNaIaJaJaI ),1(,,2,1,0)}()()()({ 11 −±±=+ ++ Llllll λλλλ (105)

This indicates that only the true eigenequation of the clamped circular 

plate is sorted out in the SVD updating matrix since the true 

eigenequation is simultaneously embedded in the six formulations. The 

result matches well with Eq.(64) in the discrete system. 

 

5. Numerical results and discussions 
Circular plate (clamped, simply-supported and free boundary 

conditions) 

A circular plate with a radius ( ) is considered. The 

boundary is discretized into ten constant elements. Since any two 

equations in the plate formulation (Eqs.(29)-(32)) can be chosen, 6 ( ) 

options of the formulation can be considered. Figures 1.(a)-(f) show the 

determinant of  versus frequency parameter 

m

4
2C

][SM λ  for the clamped 

circular plate using the six formulations. We find that the true 

eigenvalues depends on the specified boundary condition instead of the 

formulation. Figures 2.(a)-(c) show the determinant of [  versus ]SM

λ  using the formualtion (e.g. , u θ  formulation) to solve plates 

subject to different boundary conditions.  

Figures 2.(d)-(f) show the determinant of the  versus ][][ CC T λ  for 

the clamped, simply-supported and free circular plates using the 

imaginary-part formulation in conjunction with the SVD technique of 

updating term. It is found that the spurious eigenvalues are filtered out 

and only the true eigenvalues appear as predicted in Eq.(104) for the 

clamped case. The occurrence of spurious eigenvalues only depends on 

the formulation instead of the specified boundary condition. All the 

resluts are summarized in Table 1, and the eigenvalues agree well with 

the data in Leissa [19]. 

 

6. Conclusions 
An imaginary-part BEM formulation has been derived for the free 

vibration of plate problems. For a circular plate, the true and spurious 

eigenvalues and eigenequations were derived analytically by using the 

degenerate kernel and circulants in the discrete systems. Since either two 

equations in the plate formulation (4 equations) can be chosen,  

options can be considered. The occurrence of spurious eigenequation 

only depends on the formulation instead of the specified boundary 

condition, while the true eigenequation is independent of the formulation 

and is relevant to the specified boundary condition. All the spurious 

eigenequations are shown in Table 1. Three cases were demonstrated 

analytically and numerically to see the validity of the present method. 

Also, the SVD updating technique is adopted to suppress the ocurrence 

of the spurious eigenvalues for the clamped plate. Although the circular 

case lacks generality, it leads significant insight into the occurring 

mechanism of true and spurious eigenequation. Although the proof is 

only limited to the circular plate, it is a great help to the researchers who 

may require analytical explanation about the appearance of the spurious 

eigenequation. The same algorithm in the discrete system can be applied 

to solve the arbitrary-shaped plate numerically without any difficulty. 

Nevertheless, mathematical derivation in continuous and discrete 

systems can not be done anaytically. 
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虛部邊界元素法之板自由振動真假

特徵方程之數學分析及數值研究 

林盛益, 李應德, 沈文成, 陳正宗 

國立台灣海洋大學河海工程學系 

摘要 

本文以虛部邊界元素法求解一固定圓板之特徵頻率問題以節省

數值運算時間與避免奇異性。使用虛部邊界元素法在求解板自由振

動過程中所伴隨而來的真假特徵方程為此文章之討論重點。為證明

假根產生之機制，本文在於離散系統中利用退化核及循環矩陣來探

討解析一圓形板的真假特徵方程。文中以一圓板（固定端，簡支撐

及自由邊界條件）為例在離散系統中來說明，並以驗證此方法之正

確性。最後則提出採用「奇異值分解法-補充式」之技巧來克服假根

之產生，並以一固定端圓板為例在離散系統下說明並解析。 

關鍵字:虛部邊界元素法，板振動，假根，循環矩陣，退化核，奇異

值分解法-補充式技巧

Table 1. Spurious eigenequations in the six formulations by using the imaginary-part BEM 

 Spurious eigenequations for the imaginary-part BEM 

u,θformulation 
Eq. (2) and Eq. (3) 

011 =+ ++ llll JIJI  
u,m formulation 

Eq. (2) and Eq. (4) 
02))(1( 11 =−+− ++ llllll JIJIJI λρν  

u,v formulation 
Eq. (2) and Eq. (5) 

0)(2))(1( 11
22

11
2 =−+−+− ++++ llllllllll ll JIJIJIJIJI ρλλρν  

θ,m formulation 
Eq. (3) and Eq. (4) 
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22

11
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θ,v formulation 
Eq. (3) and Eq. (5) 
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m,v formulation 
Eq. (4) and Eq. (5) 0)]()1()1([
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where  ,...3,2,1,0 ±±±=l
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Figure 1.(a)  v.s. ][ cSMDet λ  ( θ,u  formulation) 
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Figure 1.(d)  v.s. ][ cSMDet λ  ( m,θ  formulation) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
frequency parameter  z

1e-100

1E-080

1E-060

1E-040

1E-020

1

1E+020

de
t|S

M
|

Clamped circular plate
using u, m imaginary-part formulation

T
<3.19>

T
<4.61>

T
<5.90>

T
<6.30>

T
<7.14>

T
<7.80>

T: True eigenvalues

Figure 1.(b)  v.s. ][ cSMDet λ  ( u  formulation) m,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
frequency parameter  z

8

1e-100

1E-080

1E-060

1E-040

1E-020

1

1E+020

de
t|S

M
|

Clamped circular plate
using �, v imaginary-part formulation

T
<3.19>

T
<4.61>

T
<5.90>

T
<6.30>

T
<7.14>

T
<7.80>

T: True eigenvalues

 

Figure 1.(e)  v.s. ][ cSMDet λ  ( v,θ  formulation) 
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Figure 1.(d)  v.s. ][ cSMDet λ  ( m  formulation) v,
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Figure 2.(a)  v.s. ][ cSMDet λ  ( θ,u  formulation) 
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Figure 2.(d) SVD updating term (clamped) 
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Figure 2.(b)  v.s. ][ sSMDet λ  ( θ,u  formulation) 
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Figure 2.(e) SVD updating term for (simply-supported) 
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Figure 2.(c)  v.s. ][ fSMDet λ  ( θ,u  formulation) 
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Figure 2.(f) SVD updating term (free) 
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