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S.Y. Lin, Y. T. Lee, W. Shen, J. T. Chen

Department of Harbor and River Engineering

National Taiwan Ocean University, Keelung, Taiwan

Abstract

In this paper, an imaginary-part BEM for solving the eigenfrequencies of plates is proposed for avoiding singularity and saving half effort in

computation instead of using the complex-valued BEM. By employing the imaginary-part fundamental solution, the spurious eigenequations in

conjunction with the true eigenequation are obtained for free vibration of plate. To verify this finding, the circulant is adopted to analytically derive

the true and spurious eigenequations in the discrete system of a circular plate. In order to obtain the eigenvalues and boundary modes at the same time,

the singular value decomposition (SVD) technique is utilized. The analytical solutions are derived in the discrete system. Three cases, clamped,

simply-supported and free circular plates, are demonstrated analytically and numerically to see the validity of the present method. SVD updating

technique is adopted to suppress the ocurrence of the spurious eigenvalues, and a clamped plate is demonstrated analytically for the discrete system in

this paper.

Keywords: Imaginary-part BEM, Plate vibration, Spurious eigenvalue, Circulant, Degenerate kernel, SVD updating technique.

1. Introduction

For the simply-connected problems of interior acoustics and
membrane, either the real-part or imaginary-part BEM results in
spurious eigenequations. Tai and Shaw [23] first employed BEM to
solve membrane vibration using a complex-valued kernel. De Mey [10,
11], Hutchinson and Wong [13] employed only the imaginary-part
kernel to solve the membrane and plate vibrations free of the
complex-valued computation in sacrifice of occurrence of spurious
eigenvalues. Kamiya et al. [17, 18] and Yeih et al. [24] linked the
relation of MRM and imaginary-part BEM independently. Wong and
Hutchinson [14] have presented a direct BEM for plate vibration
involving displacement, slope, moment and shear force. They were able
to obtain numerical results for the clamped plates by employing only the
imaginary-part BEM with obvious computational gains. However, this
saving leads to the spurious eigenvalues in addition to the true ones in
free vibration analysis. One has to investigate the mode shapes in order
to identify and reject the spurious ones. Shaw [22] commented that only
the imaginary-part approach was incorrect since the eigenequation must
satisfy the real-part and imaginary-part equations at the same time.
Hutchinson [14] replied that the claim of incorrectness was perhaps a
little strong since the imaginary-part BEM does not miss any true
eigenvalue although the solution is contaminated by spurious ones
according to his numerical experience. If we need to look for the
eigenmode as well as eigenvalue as usual, the sorting for the spurious
eigenequations pays a small price by identifying the mode shapes. Chen
et al. [3] commented that the spurious modes can be reasonable which
may mislead the judgement of the true and spurious ones, since the true
and spurious modes may have the same nodal line in case of different
eigenvalues. This is the reason why Chen et al. have developed many

systematic techniques [2, 3, 4, 5, 6,7], for sorting out the true and the

spurious eigenvalues. Niwa et al. [21] also stated that *"One must take
care to use the complete Green's function for outgoing waves, as
attempts to use just the real (singular) or imaginary (regular) part
separately will not provide the complete spectrum”. As quoted from the
reply of Hutchinson [13], this comment is not correct since the real-part
BEM does not lose any true eigenvalue. The reason is that the real and
imaginary-part kernels satisfy the Hilbert transform pair. Complete
eigenspectrum is imbedded in either one, real or imaginary-part kernel.
The Hilbert transform is the constraint in the frequency-domain
fundamental solution corresponding to the casual effect in the
time-domain fundamental solution. The physical meaning of the
imaginary-part kernel is the standing wave [12]. Tai and Shaw [23]
claimed that spurious eigenvalues are not present if the complex-valued
kernel is employed for the eigenproblem. However, it is true only for the
case of problem with a simply-connected domain [9, 10]. For
multiply-connected problems, spurious eigenequation occur even though
the complex-valued BEM is utilized.

In this paper, the spurious eigenequation for the plate eigenproblem
will be studied in the imaginary-part BEM. First of all, the true and
spurious eigenvalues will be examined for the simply-connected plate
using the imaginary-part BEM. Since any two boundary integral
equations in the plate formulation (4 equations) can be chosen, 6 (C; )
options can be considered. The occurring mechanism for the spurious
eigenequation in the plate eigenproblem in each formulation will be
studied analytically in the discrete system. For the discrete system, the
degenerate kernels for the fundamental solution and circulants resulting
from the circular boundary will be employed to determine the spurious
eigenequation. Three of plates

subject to clamped,

types
simply-supported and free boundary conditions will be illustrated to

check the validity of the present formulations. Also, the SVD updating
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technique is adopted to suppress the ocurrence of the spurious
eigenvalues for the free vibration of plate problem, and a clamped plate
is demonstrated analytically for the discrete system in this paper.
2. Boundary integral equations for  plate
eigenproblems
The governing equation for free flexural vibration of a uniform thin
plate is written as follows:

Viu(x) = Fu(x), xeQ (€8]

where u is the lateral displacement, 1A'=’ poh/D, A is the
frequency parameter, @ is the circular frequency, p, is the surface
density, D is the flexural rigidity expressed as D= Eh® /12(1-v?)
in terms of Young's modulus £ , Poisson ratio v, and the plate
thickness 4, and Q 1is the domain of the thin plate. The integral
equations for the domain point can be derived from the Rayleigh-Green

identity [24] as follows:

u(x) = L {=U(s,x)v(s) + O(s,x)m(s)

2
— M (s5,x)0(s)+V (s,x)u(s)} dB(s), x€Q
0x) = [ (-U,(5.0v(5) + ©,(s.5)m(s) )
=M ,(5,x)0(s)+V,(s,x)u(s)} dB(s), xeQ
=| {-U, ®
m() = [ U, (5.00v(s) + O, (s.)m(s) W
-M, (s,x)0(s)+V,, (s,x)u(s)} dB(s), xeQ
V(x) = J' (U, (5,x)(s) + O, (s, x)m(s)
- (5)
—M ,(5,x)0(s)+V,(s,x)u(s)} dB(s), xeQ
where B is the boundary, u , €, m and v mean the

displacement, slope, normal moment, effective shear force, s and x
are the source and field points, respectively, U, ®, M and V
kernel functions will be elaborated on later. By moving the field point to

the boundary, Egs.(2)-(5) reduce to

au(x)= —P.V.L U(s,x)v(s) dB(s) + P.V.J'B O(s, x)m(s) dB(s)

(6)
- P.V.LM(S,x)H(s) dB(s)+ PV. L V(s,x)u(s)dB(s), xeB
@ 0(x) = —P.V.J.B U, (s, x)v(s) dB(s) + P.V.J.B®9(S,x)m(x) dB(s)
7
- P.V.JBMg(s,x)H(s) dB(s)+ PV. L V,(s,x)u(s) dB(s), xeB @
am(x)=—PV. J.EUM (s,x)v(s) dB(s) + PAV.-[B @, (s, x)m(s) dB(s)
8
—py. LMm (5,1)0(s) dB(s) + PV L v, (s,x)u(s) dB(s), xeB ®
av(x)= 7P4V._[B U, (s,x)v(s) dB(s) + PV L 0, (s,x)m(s) dB(s)
©)

- P.V.j M (s,)0(s) dB(s) + P‘V.J‘ V,(s,x)u(s) dB(s), xeB
B B

where P.JV. denotes the principal value, and o =1/2 for a smooth
boundary point. We consider only the imaginary-part kernel function
U(s,x) of the fundamental solution U, (s,x) which satisfies

VAU, (5,x) - 21U, (5,x) = 5(x —5) (10)

where J(s—x) is the Dirac-Delta function. Considering the two
singular solutions ( Y, (Ar) and K(Ar), which are the zeroth-order of
second kind Bessel and modified Bessel functions, respectively) [14]
and two regular solutions ( J,(Ar) and [I,(Ar) , which are the
zeroth-order of the first kind Bessel and modified Bessel functions,

respectively) in the fundamental solution, we have

U, (s,x)= é[()’o(lr) +iJy(Ar)) —%(KU (Ar)+il (Ar))] (11)
where 7= |s - xl and i>=-1. The other three kernels, O(s,x) ,
M(s,x) and V(s,x) are defined as follows :
O(s,x) = Ky (U(s,x)) (12)
M(s,x)=K,,(U(s,x)) (13)
V(s,x)=K,(U(s,x)) (14)
where K,(-), K,() and K () mean the operators defined by
o(-
0= (s)
on
(-
£,0=w 0 +a-nZ (16)
n
£0=20 41220, a7
Y on ot onot

where n and ¢t are the normal vector and tangential vector,
respectively. The operators K,, K, and K, can be applied to U,

®, M and V kernels. The kernel functions can be expressed as:

U(s,x) =Im[U_(s,x)] (18)
®(s,x)=K9(U(s,x))=@ (19)
M(s,x)=Km(U(s,x))=va_U(s,x)+(1—v)% (20)
n&
B _oViU(s,x) 8 Q°U(s,x)
Vis,x)=K,(U(s,x)) = —a 1-v) o, (—ans o, ) (21

The displacement, slope, normal moment and effective shear force are

derived by
O(x) = Ky(u(x)) (22)
m(x) = K, (u(x)) (23)
v(x) = K, (u(x)) (24)

Once the field point x locates outside the domain, the null-field BIEs
of the direct method in Eqs.(6)-(9) yield

0= L {=U(s,x)v(s) + O(s,x)m(s)

(25)
— M (5,x)0(s)+V (s,x)u(s)} dB(s), xeQ°
0= .L (U, (5,5)v(5) + @y (5,)m(s) o6
— M y(5,X)0(s)+V,(s,x)u(s)} dB(s), xeQf
0= .L (U, (5,x)(s) + ©, (s, x)m(s) o

-M, (5,x)0(s)+V, (s,x)u(s)} dB(s), xeQ°
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0= L (U, (5,x)v(s) + O, (5, x)m(s)
=M, (5,x)0(s) +V,(s,x)u(s)} dB(s),

(28)
xeQ’
where Q° is the complementary domain. Note that the null-field BIEs
are not singular, since x and s never coincide.
When the boundary is discretized into 2N constant elements, the

linear algebraic equations of Egs.(6)-(9) can be obtained as follows:

= [Ul{v} +[0)im} +[M]{0} +[V]{u} (29)
=[Up]{v} + [0, 1{m} +[M, 140} + [V, ]{u} (30)
0=[U,1{} +[0,]{m} +[M, {0} + [V, ]{u} (31
=[U,1{v} +[0,1im} +[M, {0} + [V, ]{u} (32)

where [U], [O], [M], [V], [Up]l, [0,], [M,], [V,]. [U,].
(e,1. M,], 7,1, [U], [6,], [M

influence matrices with a dimension 2N x2N, {u}, {6},

,] and [V,] are the sixteen
{m} and

{v} are the vectors of boundary data with a dimension 2N x1 .

3. Mathematical analysis for the true and spurious
eigensolutions

Case 1. Clamped circular plate

For the clamped circular plate (¥ =0 and #=0) witharadiusa,

Eqgs.(29) and (30) can be rewritten as
=[U]{v} +[O]{m} (33)

0=[U,]{v} +[0,]{m} (34

By assembling Eqgs.(33) and (34) together, we have
(M} t=0 35
o= (35)

where the superscript ** ¢ " denotes the clamped case and

Uu o
[SM]= [ } (36)
Usg ©, ANx4N

v
For the existence of nontrivial solution of { } , the determinant of the
m

matrix versus eigenvalue must be zero.

Since the rotation symmetry is preserved for a circular boundary, the
influence matrices for the discrete system are found to be circulants with

the following forms into Eq.(33), we have

Zy 2 2 ZaN-1
ZaN-1 2y 2 ZaN-2
[U1=|zon0 Zona 2o ZiN-3 (37)
Z 2 Z3  ZoN- Zy

2Nx2N

The coefficients of each element can be obtained by using degenerate

kernel
(m+— ) ¢
2= |7 U@ b a gl dg = -Ulad,.a.9)a A,
(mfz (38)
m=0,12,..2N-1

where A;:27r/2N s am :mAg_ﬁ. The kernel functions,
O(s,x), U,(s,x) and O,(s,x),

U(s,x) ,
can be expanded by using the

expansion formulae

TGy =0, (AP}, (Ap) cos(m(g—4)), p>p
Jo(r) = _ _ D)
JsGr) = D0, Up)], (Ap)cosim(p=4), p>p

m=—o0

1, = Y (=)L, (Ap), (3p) cosm(p=9)), p>p
1y(3r) = " (40)
1500 = Y (D" 1,Gp), i) cosm@- ), p>p

m=—w

where J, and [/, denote the mth-order Bessel and modified Bessel

i "and ' e " denote
s=(p,¢)

and x=(p,¢) are the polar coordinates of s and x, respectively. In

functions of the first kind. The superscripts ™

the interior point (; > p) and the exterior point (; <p),

this case, ; =p=a for the circular plate with a radius a . Similarly,
the other kernels can also be expanded into degenerate forms. By

introducing the following bases for circulants, 7, [CZN]I s [CZN]2 s

[CZN]3,..., [CzN]ZN",we can expand matrix [U] into
[UT= 2] +2,[Coy T +2,[Con 1 oot 2y, [Coy T (41)
where
0 - 0
001 -0
(Copl=|. . . . . (42)
1 O 0 2Nx2N

Based on the similar properties for the matrices of [U] and [C,,],

we have

(U] _ 2 2N-1

M =zytno o)+t 0, =012, 2N -1 (43)

where #"! and «a, are the eigenvalues for [U] and [C,,],
respectively. It is easily found that the eigenvalues for the circulants

[C,x], are the roots for > =1 as shown below:

27l

a,=e, (=012 AN-LN or (=012.2N-1 (44

The eigenvector for the circulant [C,, ] is
1
a,
Wi=y af (43)
2N-1

,
2Nx1

Substituting Eq.(44) into Eq.(43), we have

2N-1 2N-1 lZ/sz
=Yzl =Y ze 2V, 0=0£12, H(N-D,N  (46)
m=0 m=0
According to the definition for z, in Eq.(38), we have
z,=Zyy_y, m=012..2N~-1 47)
Substitution of Eq.(47) into Eq.(46) yields
N-1 2N-1 _
1Y =z + (=) 2, +Z(a/ +a} M)z, = Y cos(mlAd)z,  (48)
m=0

Substituting Eq.(38) into Eq.(48) for ¢ =0 without loss of generality,

the Riemann sum of infinite terms reduces to the following integral
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2N-1 _ _
w1 = lim Y cos(mlAG-U (a.,,:,0)]
m=0 (49)

<[ eostiPI-U @ g0 dp

By using the degenerate kernel for U(s,x) and the orthogonal

conditions of Fourier series, Eq.(49) reduces to

W __ 2
4V = 412[Jﬁ(ﬂa)J,(ﬂa) ﬁI,(ﬂa)b(/la)]

(50)
0 =0,x1,£2,...2(N -1),N
Similarly, we have
[e] _ ™ ' 2 '
=—1I[J,(Aa)J,(la)——1,(Aa)],(La
Hy 4%[ ((Aa)J,; (Aa) . ((Aa)];(Aa)] (51
(=0,x1£2,... (N -1),N
wy_ ma 2 .
Ky ' =——[J,(Aa)J,(Aa) ——1,(Aa)l,(Aa
0 41[ ((Aa)J,(Aa) - 1 (Aa)1,(Aa)] 52)
0 =0,x1,%2,. . x(N -1),N
o, ) 2., ,
K% = 1 Ga) )| Ga) - — L (o) (Ja)] 3)
0 =0,x1,%2,.. . x(N -1),N
where #°7, kY7 and xI®! are the eigenvalues of [©], [U,] and

[®,] matrices, respectively. Since the four matrices [U], [®], [U,]

and [©,] are all symmetric circulants, they can be expressed by

[V]=x,0"
u 0 0 0 0 0]
0 ﬂl[U] 0O -~ 0 0
0 0 L ) 0
B S
7(1) : . : (D
0 0 0 M[\y—]l 0
0 0 0 43,
[U]
o 0 0 0 Ay Lvsan
[0]= 05 D!
S o 0 o]
0 47 o
0 0 4
55
_q| : S : : o (55)
0 0 0 - ﬂ[\?]l 0 0
0 0 0 ﬂ[?%m) 0
[©]
i 0 0 0 - 0 0 AN hnvson
[U,]=o%, @
W0 0 0 0 0]
0 &Y 0 0 0 0
0 0
I 56
0 0 0 5\“1 0 0
0 0 0 K'El(jg]\/,l) 0
[U]
| 0 0 0 0 0 KN Lovean
[©,1= (Dze)gq)il
K-[O] 0 0 0 0 0 -
0 Lo 0 0 0
00 & 0 ‘
I 57
. S : ot O
o o o A 00
0 0 KE?}VA) 0
[0]
| 0 0 0 N lanxon

where
(I):;
on
1 1 VJ7 N 1 0 1 :
1 cos«f—'\:) s.n(ﬁ\ o cos2EEeD sin(—= (\\ D L\!»(ﬂ) 58
ar ar 47(2n—1) 4x(N - 1) 4”\ ( )
1 COS(——) sin(—=——) e COS(me— SIN(— L\)\(_)
2N 2N 2N 2N
272N - 1) 27(2n-1) 27(2N )N 1) 272N = 1)(N - 1) 27(2N - )N
2N 2N 2N 2N 2N INx2N
By employing Eqs.(54)-(57) for Eq.(36), we have
. |z oz 0!
[SM*]= o -1 (59
T, © Oz, @
0 o 4Nx4N

Eq.(59) can be reformulated into

sy =] @ 0Tz Zefo o' )
10 @%, e, |0 @
Since @ is orthogonal (deth)l:det|d)’l|:l ), the determinant of
[SM*4pay 18

det[SM ¢ dtzU
et[ ]—ez% 299

By employing Eqs.(50)-(53) for Eq.(61), we have

H(u =Pk (61

—(N-1)

o ”zaz
det[SM*] = ’:71(“\[‘7”—16/12
Hes (/10)«/,(ﬂa)—%1,(M)l/(ﬂﬂ)][Jf(ﬂa)Jf(M)—%lf(ﬂﬂ)ﬂ(ﬂa)] (62)
—[Jf(ﬂa)«/;(ﬂa)—%1/(ﬂﬂ)ﬂ(ﬂa)][«/;(M)J/(ﬂﬂ)—%1/'(10)1,(/10)]}
Eq.(62) can be simplified into

N
detfsml= ] ra 22 11, (Aa)J,(Aa) —1,(Aa)J,,,(Aa)]

(=—(N-1) 84 (63)
Hn(Aa)J (Aa) +1,(2a)J ., (Aa)}

Zero determinant in Eq.(63) implies that the eigenequation is

[1,,(Aa)J [ (Aa) +1,(Aa)J,, (Aa)]

U1 (Ga)] () + 1,(Ga)] (G} =0, € = (64)

0,£1,42,-- +(N = 1),N
After comparing with the analytical solution for the clamped circular
plate [19], the true eigenequation for a continuous system can be
obtained by approaching N in the the discrete system to infinity. The
former part in the middle bracket of Eq.(64) is the spurious
eigenequation while the latter part in the big bracket is found to be the
true eigenequation. In this case, it is interesting to find that the true and
spurious eigenequation are the same. We can also comment that no

spurious eigenvalue occurs although the spurious multiplicity appears.

Case 2. Simply-supported circular plate
For the simply-supported circular plate (u =0 and m=0) with a

radius a , we have

[SM*]{U M} (65)
Uy M, 4NX4N

where the superscript ** s " denotes the simply-supported case. Since the
rotation symmetry is preserved for a circular boundary, the eigenvalues
of the influence matrices for the discrete system can be found by using

circulants, we have
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M) _

! 2 1, (aya! (7a))

r (66)
(=012, +(N ~1),N

f%wﬁ (Qa)a;] (Aa) -

m 2 .
xiM = _H[J"’ (Aa)a] (Aa) —;Ia(ﬂa)a,’ (Aa)] ©7)
(=0,t1,+2,...+(N -1), N

[M]

where ™! and ! are the eigenvalues of [M] and

[M ,] matrices, respectively, and

ol =2J,(Ja)+ V%U;(/la) - (%)ZJW (Aa)] (68)

o) = 2L 0a) + L, (Aa) - (2’1, (2a)] (69)
a a

Since the two matrices [M] and [M,]are all symmetric circulants,
they can be expressed by
M]=0%, ®T (70)

[M,]=0%,, o (1)

By employing Eqgs.(54), (56), (70) and (71) for Eq.(65), we have
o oz, =, Jo ol
SM* = 72
[ ] |:O (D:”:ZW EMo i||:0 CDi| ( )

Since @ is orthogonal, the determinant of [SM*],y.uy 1S

ZU ZM X [U],.[M] [M] .[U]
= H(luﬁ K, — MK, ) (73)

det[SM *] = det
{Zve ZM,, (=—(N-1)

By employing Eqs.(50), (52), (66) and (67) for Eq.(73), we have

N ﬂ_:az
det[SM*]=
I}.) 162

(U, Ga (ia) - 21, Gt G e () - 21 Gyl ) (74)

Gy (Aa) 21, (a)al (Ga)lJ i (Aa)  (Aa) = I (Aa)T, (2a)]}
T T

Eq.(74) can be simplified into

detisM = ] 2t (e, (a1, G, (G
e[ SM"] /:1;[4)8&2[ A(Ga),(Ga) - 1,(Aa)],,,(Ga)] o

{(1=V)1,(2a)],,(2a) +1,,,(Aa)] (a) - 2Aal (Za)J (Aa)}
Zero determinant in Eq.(75) implies that the eigenequation is

[{,,,(Aa)J (Aa) - I,(Aa)J ,, (Aa)]
A=-n1,(Aa)J,,,(Aa) + 1,,,(2a)J ,(Aa) —22al (Aa)] ,(Aa)} = 0,  (76)
0=02142, - £(N =1),N

After comparing with the analytical solution for the simply-supported
circular plate [19], the true eigenequation for a continuous system can be
obtained by approaching N in the discrete system to infinity. The
former part in Eq.(76) inside the middle bracket is the spurious
eigenequation while the latter part inside the big bracket is found to be

the true eigenequation.

Case 3. Free circular plate
For the free circular plate (m =0 and v=0) with a radiusa , we

have

[SM/]{M V} a7
My Vo 4Nx4N

where the superscript ** f " denotes the free case. Since the rotation
symmetry is preserved for a circular boundary, the eigenvalues of the
influence matrices for the discrete system can be found by using

circulants, we have

v__ ™ J _2 I
LR [J, (Aa)B; (Aa) 2 1,(Aa)B; (Aa)
i1 Y1, Gayy! () - %h Vayy! (a)] (78)
(=0,t1,+2,...x(N -1),N
Kl == 21, G a2 1, G )
T
(79)

LV (Aa)y; (Aa) “2 (Aa)y; (Aa)]
a a

0 =0,£1,%2,...2(N -1), N

]

where ,uEV] and x, ' are the eigenvalues of [J'] and [V,] matrices,

respectively, and

2
B = 20} G ol 20, = 2 ) == T )+ () G)(80)
2
Bl = 1)+l 1 ) = (51 )~ 20 G+ 1, ] (81)
J__ ol A
Yy =0 [?J"(M)Jr;t/ (Za)] (82)

Va = —nz[izl,, (Za) +il'(ia)] (83)
a a

Since the two matrices [/'] and [V, ] are all symmetric circulants, they
can be expressed by
V=0%, ®" (84)
[VG]:CI)ZV(, o’ (85)
By employing Eqs.(70), (71), (84) and (85) for Eq.(77), we have
® oz, I o of
[SM] :[ } : { } 86
0 |2, %,[|0 @ (86)
Since ® is orthogonal, the determinant of [SM /]y, is
/ ZM ZV = [M], V] V1,.[M]
det[SM /] = det = [T & = %™ (87)
ZMH ZVH (=—(N-1)

By employing Eqs.(66), (67), (78) and (79) for Eq.(87), we have

2 2
det[SM /= ra
[SM7 ,:H,l,lsf

{[J,(Za)J (1a) —%1, (Aa)1,(Aa)][J}(Aa)a] (Aa) —%If(la)a,’(ﬂa)] (8%)

~[J,(Aa)a} (Aa) —%lf(ﬂﬂ)a/'(ﬂﬂ)][Ji(M)J, (2a) —%L’(la)l, (Aa)]}

Eq.(88) can be simplified into
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det[SM 7]
N
= || S5ttty va)-1,Ga),.,Ga)
/:-(1\/-1)82'
{Aa(-v)[-46 (L =D, (Aa)J (ha) - 247G, (Aa)J 1, (Aa)
+202%a* A= v)(1 = O (Aa)] ()~ 1,(Aa)J ., (Aa))
+[A-v) (7 =)+ 21U, ()T () + 1, (Aa) ., (Aa))} = 0

(89)

Zero determinant in Eq.(89) implies that the eigenequation is
Uin(2a)J (2a) =1, (2a)J ., (Aa)]
{Aa(1=v)[-40* (¢ =)1,(Aa)] ,(Aa) - 22’1, (Aa)J ., (Aa)]
+ 2020 (1)1~ 01, (Aa)] (Aa) ~ 1,(3a)J ., (7)) (90)
A=) (2 =D+ 261 (Aa)d (Aa) +1,(Aa) ] ., (2a)]} = 0,
0 =0,£1,£2,---, £(N -1),N

After comparing with the analytical solution for the free circular plate
[19], the true eigenequation for a continuous system can be obtained by
approaching N in the discrete system to infinity. The former part in
Eq.(90) inside the middle bracket is the spurious eigenequation while the
latter part inside the big bracket is the true eigenequation. After
comparing Eq.(64) with Eqgs.(76) and (90),
eigenequation ([/,,,(da)J,(Aa)+1,(Aa)J,,,(Aa)]=0)

the same spurious
is embedded
in the u, € formulation no matter what the boundary condition is.
This reconfirms that spurious eigenequation depends on the formulation
instead of the specified boundary condition. It is noted that the true
eigenequation of free plate does not agree with that of the Leissa result
[19]. However, the same true eigenvalues are obtained numerically
between the present and Leissa's results. After finding the eigenvalues
according to the Leissa's eigenequation, the eigenvalues are not
consistent in his book. The possible explanation is that the eigenequation
in the Leissa's book for the free case was wrongly typed. After careful
check, the eigenequation in the Leissa's book was a misprint where the
I index in the numerator of the right hand side of the equation should
beJ .

Since any two equations in the plate formulation (Eqs.(29)-(32)) can be
chosen, 6 (C; ) options of the formulation can be considerd. If we
choose different formulac for either one of the the clamped,
simply-supported or free circular plate cases, we can obtain the same
true eigenequation but different spurious eigensolutions. At the same
time, either clamped or simply-supported circular plate results in the
same spurious eigenequation, once we use the same formulation. The
occurrence of spurious eigensolution only depends on the formulation
instead of the boundary condition. True eigenequation depends on the
specified boundary condition instead of the formulation. All the spurious

eigenequations are summarized in Table 1 for the six formulations.

4. Extraction of the true eigenvalues using SVD
updating technique in the discrete system
A conventional approach to detect the nonunique solution is the

criterion of satisfying all Eqgs.(29)-(32) at the same time. For the

clamped plate (#=0 and 6 =0), the Eqs.(29)-(32) reduce to
0=[Ul{v} +[©]{m}, 91)
0=[U,1{v} +[0,]{m}, (92)

0=[U, v} +[0,]{m}, 93)
0=[U,]1{v} +[©,]{m}, 94)

After rearranging the terms, Eqs.(91) and (92) can be assembled to

[SM,]{;} -0, (95)
where
Uu o
[SM,]1= {U o :| . (96)

Similarly, Eqs.(93) and (94) yield
v
[SM 2]{ } =0, ©7)
m

where

[SM ]_ Um ®m
A=y e . (98)
4Nx4N

v v

Since the imaginary-part BEM misses the real-part information, we can
reconstruct the independment equation by differentiation. To obtain an

overdetermined system, we can combine Eqs.(95) and (97) by using the

v
[C]{ } =0, 99)
m

SM,
(1= SM '
2 _lgnxaN

Since the eigenequation is nontrival, the rank of the matrix [C ] must

updating term,

where

(100)

be smaller then 4N , the 4N singular values for the matrix [C]
must have at least one zero value. The explicit form for the matrix [C]

can be decomposed into

® 0 0 0] 2 26
0 & 0 02, 2o [® 0
[C]= R - (101)
00 @ 0[X, o, |l 0 @
00 0 @, X

Based on the equivalence between the SVD technique and the

least-squares method in mathematical essence, the least square form

leads to
g [® 0 @ 0]
[ [C]—{O J[D]WN_O (D} (102)
where
_ZU Z@
ZU ZUG ZUm zUv_ ZU{? 205
[D]—{Ze SN (103)
5, .

If the determinant of the matrix [C]T[C] is zero, we can obtain the
nontrival solution. Since @ is orthogonal, the determinant of the

matrix [C]T [C] is equal to the determinant of the matrix [D] By
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calculating the determinant of the matrix [D] , we have

N
detfD]= [T w0l Wl =l + (1o = oIy
I=—(N-1)
) . , ) 104
- IS s e el 0

(1 x5 + (1o - ey
where {,[U], (,[O] s 6;[(“’] and 5,[U] are the eigenvalues of the
matrices [Um] s [@m] s [U‘,] and [@v], respectively. The only
possibility for the zero determinant of the matrix [D] occurs when the
P ) el gk
R I (R I

< {,[U]&[@] -, {,[O]é'/[U]) are all zeros at the same time for the same /.

Six terms

Here we can find that the six terms result in the six different spurious
eigenequations as shown in Table 1, and the same true eigenequation is
commonly imbedded in the six formulations. The only possibility for the
zero determinant of the matrix [D] is only the common term (true
eigenequation) to be zero, such that

., (Aa) (Aa) + J ., (Aa)l,(Aa)} = 0, £=02122,--- £(N -1),N (105)

This indicates that only the true eigenequation of the clamped circular
plate is sorted out in the SVD updating matrix since the true
eigenequation is simultaneously embedded in the six formulations. The

result matches well with Eq.(64) in the discrete system.

5. Numerical results and discussions

Circular plate (clamped, simply-supported and free boundary
conditions)

A circular plate with a radius (@ =1m ) is considered. The
boundary is discretized into ten constant elements. Since any two
equations in the plate formulation (Eqs.(29)-(32)) can be chosen, 6 ( C; )
options of the formulation can be considered. Figures 1.(a)-(f) show the
determinant of [SM] versus frequency parameter A for the clamped
circular plate using the six formulations. We find that the true
eigenvalues depends on the specified boundary condition instead of the
formulation. Figures 2.(a)-(c) show the determinant of [SM] versus
A using the formualtion (e.g. u, 6 formulation) to solve plates
subject to different boundary conditions.

Figures 2.(d)-(f) show the determinant of the [C]"[C] versus A for
the clamped, simply-supported and free circular plates using the
imaginary-part formulation in conjunction with the SVD technique of
updating term. It is found that the spurious eigenvalues are filtered out
and only the true eigenvalues appear as predicted in Eq.(104) for the
clamped case. The occurrence of spurious eigenvalues only depends on
the formulation instead of the specified boundary condition. All the
resluts are summarized in Table 1, and the eigenvalues agree well with

the data in Leissa [19].

6. Conclusions

An imaginary-part BEM formulation has been derived for the free
vibration of plate problems. For a circular plate, the true and spurious
eigenvalues and eigenequations were derived analytically by using the
degenerate kernel and circulants in the discrete systems. Since either two

equations in the plate formulation (4 equations) can be chosen, C; (6)

options can be considered. The occurrence of spurious eigenequation
only depends on the formulation instead of the specified boundary
condition, while the true eigenequation is independent of the formulation
and is relevant to the specified boundary condition. All the spurious
eigenequations are shown in Table 1. Three cases were demonstrated
analytically and numerically to see the validity of the present method.
Also, the SVD updating technique is adopted to suppress the ocurrence
of the spurious eigenvalues for the clamped plate. Although the circular
case lacks generality, it leads significant insight into the occurring
mechanism of true and spurious eigenequation. Although the proof is
only limited to the circular plate, it is a great help to the researchers who
may require analytical explanation about the appearance of the spurious
eigenequation. The same algorithm in the discrete system can be applied
to solve the arbitrary-shaped plate numerically without any difficulty.
Nevertheless, mathematical derivation in continuous and discrete

systems can not be done anaytically.
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Table 1. Spurious eigenequations in the six formulations by using the imaginary-part BEM

Spurious eigenequations for the imaginary-part BEM

u, © formulation
Eq. (2) and Eq. (3)

1,.,J,+1.J,, =

+1

u,m formulation
Eq. (2) and Eq. (4)

A-v)1,J

+1,,J,)=24pl,J, =0

[+1

u,v formulation
Eq. (2) and Eq. (5)

CA=U T +1ad ) =22p 01T, + 22 p* (1T,

-1,4J)=0

6 ,m formulation
Eq. (3) and Eq. (4)

A=Y, Ty + 10 ) =220 01T, + 22 p> (L, d 0y —1,,J,)=0

@ ,v formulation
Eq. (3) and Eq. (5)

22p(471,J, - /12/02[(41*]“1) +22°p? LI,

—1,J,.)-2 A=V, J, +1,J,,)=0

m,v formulation

Eq. (4) and Eq. (5) +[02 (1=v)2 (42

A=A (=D, T, =222 ] 142022 P2 (=)= O (L0,
“D) 42 P N T, +1,T,) =0

—1,J,.)

where /=0,+1,+2,43,...
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