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Abstract 

In this paper, the method of fundamental solutions 

(MFS) for solving the eigenfrequencies of an annular 

plate is proposed. By employing the fundamental 

solutions, the coefficients of influence matrices are 

easily determined. Spurious eigensolutions in 

conjunction with the eigensolutions appear. It is found 

that spurious eigensolutions using the MFS depend on 

the location of the inner boundary where fictitious 

sources are distributed. To verify this finding, true and 

spurious eigenvalues for an annular plate are analytically 

studied using degenerate kernels and circulants. In order 

to obtain the true eigensolution, the singular value 

decomposition (SVD) updating technique and the 

Burton & Miller method are utilized to filter out the 

spurious eigensolutions. An annular plate is 

demonstrated analytically to see the validity of the 

present method. 

Keywords: Annular plate; Method of fundamental 

solutions; Circulant; Degenerate kernel; SVD updating 
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1. Introduction 

The method of fundamental solutions (MFS) is a 

numerical technique as well as finite difference method 

(FDM), finite element method (FEM) and boundary 

element method (BEM). It is well known that the 

method of fundamental solutions can deal with many 

engineering problems when a fundamental solution is 

known. This method was attributed to Kupradze in 1964 

[1]. The method of fundamental solutions can be applied 

to potential [2], Helmholtz [3], diffusion [4], biharmonic 

[5] and elasticity problems [1]. The method of 

fundamental solutions can be regarded as one kind of 

meshless method. The basic idea is to approximate the 

solution by a linear superposition of fundamental 

solution with sources located outside the domain of the 

problem. It has some advantages over boundary element 

method, e.g., no boundary integrals, no singularity and 

mesh-free model. 

In boundary element method, Tai and Shaw [6] first 

employed the complex-valued BEM to solve membrane 

vibration. De Mey [7], Yas’ko [8], Hutchinson and 

Wong [9] employed only the real-part kernel to solve the 

membrane and plate vibrations, respectively. Although 

the complex-valued computation is avoided, they faced 

the occurrence of spurious eigenequations. One has to 

investigate the mode shapes in order to identify and 
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reject the spurious ones. If we usually need to look for 

the eigenmode as well as eigenvalue, the sorting for the 

spurious eigenvalues pay a small price by identifying the 

mode shapes. Chen et al. [10] commented that the 

detection of spurious modes may mislead the judgment 

of the true and spurious ones, since the true and spurious 

modes can have the same nodal line by observation in 

case of different eigenvalues. This is the reason why 

Chen and his coworkers have developed many 

systematic techniques, e.g., dual formulation [10], 

domain partition [11], SVD updating technique [12], 

CHEEF method [13], for sorting out the true and the 

spurious eigenvalues. Spurious eigenvalues occur when 

real-part BEM, imaginary-part BEM and MRM are 

employed to solve the eigenproblem of simply 

connected domain. For multiply-connected problems, 

spurious eigenvalues still occur even though the 

complex-valued BEM is utilized. The occurrence of 

spurious eigenvalues and its treatment have been studied 

in the membrane and acoustic problems [14, 15]. 

    In meshless method, Kang et al. proposed so-called 

nondimensional dynamic influence function (NDIF) to 

solve membrane [16] and plate vibration [17]. They also 

faced the problem of spurious eigensolutions. Therefore, 

they addressed the net approach to filter out the spurious 

eigenvalues. Later, Chen et al. commented that the 

NDIF is the special case of imaginary-part MFS for 

membrane [18] and plate [19]. Although MFS has been 

applied to solve many engineering problems, most of 

them are for cases with simply-connected domains. 

Chen et al. have tried to solve the eigenproblem of 

annular membrane and found that spurious eigenvalues 

also appear. We may wonder what happen for the plate 

case instead of membrane. 

In this paper, the method of fundamental solutions 

for solving the eigenfrequencies of annular plate is 

proposed. The occurring mechanism of the spurious 

eigensolution of an annular plate is studied analytically. 

The degenerate kernels and circulants are employed to 

determine the spurious eigensolution. In order to filter 

out the spurious eigenvalues, singular value 

decomposition updating technique and Burton & Miller 

method are utilized. An annular case is demonstrated 

analytically to see the validity of the present method. 

 
2. Formulation of annular problem using the method 

of fundamental solutions 

The governing equation for an annular plate 

vibration in Fig.1 is the biharmonic equation as follows: 

Ω∈=∇ xxuxu ),()( 44 λ , (1)

where 4∇  is the biharmonic operator, u is the lateral 

displacement, 
D

h0
2

4 ρω
λ = , λ  is the frequency 

parameter, ω  is the circular frequency, 0ρ  is the 

surface density, D is the flexural rigidity expressed as 

)1(12 2

3

ν−
=

EhD  in terms of Young’s modulus E, the 

Possion ratio ν  and the plate thickness h, and Ω  is 

the domain of the thin plate.  

The kernel function ),( xsU c  is the fundamental 

solution which satisfy 

)(),(),( 44 sxxsUxsU cc −−=−∇ δλ , (2)

where )( sx −δ  is the Dirac-Delta function, and s and 

x are the source and field points, respectively. We have  
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where || xsr −≡ , 12 −=i , )()1(
0 rH λ  is the first 

kind zeroth-order Hankel function, )(0 rJ λ  and 

)(0 rY λ  are the first kind and second kind zeroth-order 

Bessel functions, respectively, and )(0 rK λ  is the 

second kind zeroth-order modified Bessel function. 

Because the first kind modified Bessel function )(0 rI λ  

is the homogeneous solution of the biharmonic operator, 

we can add it to the fundamental solution for satisfying 

the Hilbert transform of causal constraint. Then, the 
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complete kernel function ),( xsU  is shown below: 

))].()((2)()([
8
1),( 00002 riIrKriJrYxsU λλ

π
λλ

λ
−+−= (4)

Based on the definition of MFS, we can represent the 

displacement field of plate vibration by 
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where 2N is the number of fictitious source nodes. jφ  

and jϕ  are the known densities with respect to P and 

Q. The two kernels (P and Q) are obtained from either 

the two of the kernel ),( xsU  and the following three 

kernels, 

)),((),( xsUxs θℵ=Θ , (6)

)),((),( xsUxsM mℵ= , (7)

)),((),( xsUxsV vℵ= , (8)

where )(⋅ℵθ , )(⋅ℵm  and )(⋅ℵv  mean the operators 

which are defined as follows: 
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where n and t are the normal vector and tangential vector, 

respectively. The operators in Eqs.(9), (10) and (11) can 

be applied to U, Θ , M and V kernel to generate sixteen 

kernels as shown in Fig. 2. Three operators can be also 

applied to Eq.(5), and we have 

))(()( xux θθ ℵ=  (12)

))(()( xuxm mℵ=  (13)

))(()( xuxv vℵ=  (14)

where θ , m and v denote the slope, normal moment 

and effective shear force, respectively. For the purpose 

of deriving the exact eigensolution, we consider the 

annular plate. The radii of inner and outer circles are a 

and b for the real boundary, respectively. The source 

strengths are distributed on the inner and outer fictitious 

boundaries of radii a′  and b′  in Fig.3, respectively. 

For demonstrating the validity of this approach, we 

consider the clamped case (u=0 and 0=θ ) by using U 

and Θ  kernels. We distributed 2N field points at each 

real boundary, and the same 2N sources are distributed 

on the fictitious boundary. By matching the boundary 

condition, Eq.(5) can be obtained and can be written in a 

matrix form as follows: 
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where }1{φ , }2{φ , }1{ϕ  and }2{ϕ  are the 

generalized coefficients for B1 and B2 with dimension 

12 ×N , the matrices ][ ijU  and ][ ijΘ  mean the 

influence matrices of U and Θ  kernels which are 

obtained by collocating the field and source points on Bi 
and jB′  with a dimension NN 22 × , respectively. 

Similarly, the Eq.(12) can be rewritten as 
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where the matrices ][ θijU  and ][ θijΘ  mean the 

influence matrices of θU  and θΘ  kernels which are 

obtained by selecting the field and source points on Bi 
and jB′  with a dimension NN 22 × , respectively. By 

assembling the Eqs.(15) and (16) together, we have 
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where the superscript “cc” denotes the clamped-clamped 

case and  
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For the existence of nontrivial solution, the determinant 

of the matrix versus the eigenvlaue must be zero, i.e., 

0]det[ =ccSM  (19)

By plotting the determinant versus the frequency 

parameter, the curve drops at the positions of 

eigenvalues. 
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3. Mathematical analysis of true and spurious 

eigenvalues 

For the kernel function, we can express 

),( φρ=x and ),( θRs =  in terms of polar coordinate. 

The U kernel can be expressed by using degenerate 

kernels as shown below: 
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where the subscripts “I ” and “E ” denote the interior (R 

> ρ) and exterior domains (R < ρ), respectively.  

Similarly, other kernels, Θ , θU  and θΘ , are 

obtained as follows: 
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Since the rotation symmetry is preserved for a circular 

boundary, the sixteen influence matrices in Eqs.(15) and 

(16) are all symmetric circulants. We have the influence 

matrices [U11], 
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where the elements of the first row can be obtained by  
).,(11 ijij xsUa =−

 (29)

The matrix [U11] in Eq.(28) is found to be a circulant 

since the rotational symmetry for the influence 

coefficients is considered. By using the degenerate 

kernel and the orthogonal property, the eigenvalue of the 

matrices [U11], [U12], [U21] and [U22] can be obtained 

as follows: 
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where .),1(,,2,1,0 NNm −±±±= Similarly, the 

eigenvalue of the other twelve matrices can be obtained. 

By using the similar transformation, we can decompose 

the [U11] matrix into 
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Similarly, the other fifteen matrices can be decomposed. 

Equation (18) can be decomposed and rearranged into 
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Since Φ is unitary, the determinant of [SMcc] is 
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It is noted that the matrix ][ cc
mT  denotes the matrix of 

true eigenequation for the C-C case and the matrix 

][ ΘU
mS  denotes the matrix of spurious eignequation in 

the U and Θ  formulations. Zero determinant in the 

Eq.(38) implies that the eigenequation is 

0])[][det( =ΘU
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After comparing with the analytical solution for the 

annular plate [20], the former matrix ][ cc
mT  in the 

Eq.(41) results in the true eigenequation while the latter 

matrix ][ ΘU
mS  results in the spurious eigenequation. 

The spurious eigenvalues occur when 0][det =ΘU
mS . 

The second matrix in Eq.(41) can be further decomposed 

into 
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Since )](det[ bS b ′′  is never zero, the spurious 

eigenequation depends on a′ . It is noted that the 

spurious eigensolution happens to be true eigensolution 

of the clamped circular plate with a radius a′ . 

Therefore, the positions of spurious eigenvalues for the 

annular problem depend on the location of inner 

fictitious boundary a′  where the sources are 

distributed. Problems subject to different boundary 

conditions on the outer and inner boundaries (C-S, C-F, 

S-C, S-S, S-F, F-C, F-S and F-F in which S and F denote 

simply-supported and free boundary conditions, 

respectively) are also solved. All the results for different 

boundary conditions of the annular plate are shown in 

Table 1. 

4. Treatment of spurious eigenvalues 

4.1 SVD updating technique 

In order to extract out the true eigenvalues, the 

SVD updating technique is utilized. In spite of the U and 

Θ  formulations to obtain Eq.(16), we can also select 

the M and V formulations and obtain 
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where }1{φ ′ , }2{φ ′ , }1{ϕ′  and }2{ϕ′  are the 
generalized coefficients for B1 and B2 with dimension 

12 ×N  using M and V formulations. By employing the 

relation in the degenerate kernels between direct and 

indirect methods, the SVD updating document (Indirect 

method) to extract out the true eigenequation is 

equivalent to the SVD updating term (Direct method). 

We have 

⎥
⎦

⎤
⎢
⎣

⎡
= Hcc

Hcc

SM
SM

C
)(
)(

][
1

, (46)

For the existence of nontrivial solutions, the rank of the 

matrix [C] must be smaller than 8N. By using the 

property of Eq.(37), the matrix can be written as 
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C (47)

Based on the equivalence between the SVD technique 

and the least-squares method, we can obtain the true 

eigenequation 
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This indicates that only the true eigenvalues for annular 

plate are imbedded in the SVD updating matrix. 

 

4.2 Burton & Miller method 

By employing the Burton & Miller method for 

dealing with fictitious frequency, we extend this concept 

to suppress the appearance of the spurious eigenvalue of 

the annular plate in the method of fundamental 

solutions. 

By assembling the Eqs.(17) and (45) with an 

imaginary number, we have 

[ ] }0{
2
1

][][ 1 =
⎭
⎬
⎫

⎩
⎨
⎧

+
ψ
ψcccc SMiSM , (49)

where the 1ψ  and 2ψ  are the mixed densities. Thus, 

the true eigenequation 

0
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, (50)

is obtained. After comparing Eq.(48) with Eq.(50), we 

can find that true eigenequations are the same either by 

using the SVD updating technique or by using the 

Burton & Miller method. 

 

6. Conclusions 

The mathematical analysis has shown that spurious 

eigenvalues occur by using degenerate kernels and 

circulants when the method of fundamental solutions is 

used to solve the eigenvalue of annular plates. The 

positions of spurious eigenvalues for the annular 

problem depend on the location of inner fictitious 

boundary where the sources are distributed. The 

spurious eigenvalues in the annular problem are found to 

be the true eigenvalues of the associated 

simply-connected problem bounded by the inner sources. 

We have employed the SVD updating technique and 

Burton & Miller method to filter out the spurious 

eigenvalues successfully.  

 

References 

1. V. D. Kupradze, “A method for the approximate 

solution of limiting problems in mathematical 

physics,” Computational Mathematics and 

Mathematical Physics, vol. 4, pp. 199-205,1964. 

2. G. Fairweather and K. Andreas, “The method of 

fundamental solutions for elliptic boundary value 

problems,” Advances in Computational 

Mathematics, vol. 9, pp. 69-95,1998. 

3. A. Karageorghis, “The method of fundamental 

solutions for the calculation of the eigenvalues of the 

Helmholtz equation,” Applied Mathematics Letters, 

vol. 14, pp. 837-842, 2001. 

4. C. S. Chen, M. A. Golberg and Y. C. Hon,  “The 

method of fundamental solutions and 

quasi-Monte-Carlo method for diffusion equations,”

International Journal for Numerical Methods in 

Engineering, vol. 43, pp. 1421-1435, 1998. 

5. A. Poullikkas, G. Karageorghis and G. Georgiou, 

“Method of fundamental solutions for harmonic and 

bihramonic boundary value problems,”

Computational Mechanics, vol. 21, pp. 416-423, 

1998. 

6. G. R. G. Tai, R. P. Shaw, “Helmholtz equation 

eigenvalues and eigenmodes for arbitrary domains,”

Journal of the Acoustical Society of America, vol. 

56, pp. 796-804, 1974. 

7. G. De Mey, “Calculation of the Helmholtz equation 

by an integral equation,” International Journal for 

Numerical Methods in Engineering, vol. 10, pp. 

59-66, 1976. 

8. M. Yas'ko, “BEM with the real-valued fundamental 

solutions for the Helmholtz equation,” Proceeding 

of 7th International Congress on Sound and



第十二屆中華民國振動與噪音工程學術研討會  台北  中華民國九十三年六月四日      

Vibration, Germany, pp. 2037-2044, 2000. 

9. J. R. Hutchinson and G. K. K. Wong, “The boundary 

element method for plate vibrations”, in Proceedings 

of the ASCE 7th Conference on Electronic 

Computation, St. Louis, Missouri., New York, 

ASCE, pp. 297-311, 1979. 

10. J. T. Chen, “Recent development of dual BEM in 

acoustic problems,” Computer Method in Applied 

Mechanics and Engineering, vol. 188(3-4), pp. 

833-845, 2000. 

11. J. R. Chang, W. Yeih and J. T. Chen, “Determination 

of natural frequencies and natural modes using the 

dual BEM in conjunction with the domain partition 

technique,” Computational Mechanics, vol. 24(1), 

pp. 29-40, 1999. 

12. J. T. Chen, C. X. Huang and K. H. Chen,

“Determination of spurious eigenvalues and

multiplicities of true eigenvalues using the real-part 

dual BEM,” Computational Mechanics, vol. 24(1), 

pp. 41-51, 1999. 

13. I. L. Chen, J. T. Chen, S. R. Kuo and M. T. Liang,

“A new method for true and spurious eigensolutions 

of arbitrary cavities using the CHEEF method,”

Journal of the Acoustical Society of America, vol. 

109, pp. 982-999, 2001. 

14. J. T. Chen, J. H. Lin, S. R. Kuo and S. W. Chyuan, 

“Boundary element analysis for the Helmholtz 

eigenvalue problems with a multiply connected 

domain,” Proceedings of the Royal Society London 

Series A, vol. 457, pp. 2521-2546, 2001. 

15. J. T. Chen, L. W. Liu and H.-K. Hong, “Spurious 

and true eigensolutions of Helmholtz BIEs and 

BEMs for a multiply-connected problem,” 

Proceedings of the Royal Society London Series A, 

vol. 459, pp. 1891-1924, 2003. 

16. S. W. Kang, J. M. Lee and Y. J. Kang, “Vibration 

analysis of arbitrary shaped membranes using 

nondimensional dynamic influence function”, 

Journal of Sound and Vibration, vol. 221 (1), pp.

117-132, 1999. 

17. S. W. Kang and J. M. Lee, “Free vibration analysis 

of arbitrary shaped plate with clamped edges using 

wave-type function,” Journal of Sound and 

Vibration, vol. 242 (1), pp. 9-26, 2001. 

18. J. T. Chen, S. R. Kuo, K. H. Chen and Y. C. Cheng, 

Comments on “ Vibration analysis of arbitrary 

shaped membranes using nondimensional dynamic 

influence function” Journal of Sound and Vibration, 

vol. 235 (1), pp. 156-170, 2000. 

19. J. T. Chen, I. L. Chen, K. H. Chen, Y. T. Lee, 

Comments on "Free vibration analysis of arbitrary 

shaped plate with clamped edges using wave-type 

function," Journal of Sound and Vibration, vol. 262, 

pp. 370-378, 2003. 

20. J. T. Chen, I. L. Chen and Y. T. Lee, “Eigensolutions 

of multiply-connected membranes using the method 

of fundamental solutions,” Submitted, 2004. 

21. W. Leissa, Vibration of plates, NASA SP-160, 1969.

 
 

 
 
 
 
 
 
 
 
 



第十二屆中華民國振動與噪音工程學術研討會  台北  中華民國九十三年六月四日      

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 An annular problem Fig. 3 Figure sketch for source distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The relation of sixteen kernels 
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Table 1 True eigenequations for the annular plate 
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