J

TV = T NSRRI AT N = S e

Mathematical analysis of true and spurious eigenvalues for annular plates using the method
of fundamental solutions

Ying-Te Lee', I-Lin Chen? Kue-Hong Chen® and Jeng-Tzong Chen*

'Graduate Student, Department of Harbor and River Engineering

National Taiwan Ocean University, Keelung, Taiwan

?Associate Professor, Department of Naval Architecture

National Kaohsiung Marine University, Kaohsiung, Taiwan

®post Doctor, Hydrotech Research Institue

National Taiwan University, Taipei, Taiwan

*Professor, Department of Harbor and River Engineering

National Taiwan Ocean University, Keelung, Taiwan

jtchen@mail.ntou.edu.tw

Abstract

In this paper, the method of fundamental solutions
(MFS) for solving the eigenfrequencies of an annular
plate is proposed. By employing the fundamental
solutions, the coefficients of influence matrices are
easily determined.  Spurious eigensolutions in
conjunction with the eigensolutions appear. It is found
that spurious eigensolutions using the MFS depend on
the location of the inner boundary where fictitious
sources are distributed. To verify this finding, true and
spurious eigenvalues for an annular plate are analytically
studied using degenerate kernels and circulants. In order
to obtain the true eigensolution, the singular value
decomposition (SVD) updating technique and the
Burton & Miller method are utilized to filter out the
spurious eigensolutions. An annular plate is
demonstrated analytically to see the validity of the
present method.
Keywords: Annular plate; Method of fundamental
solutions; Circulant; Degenerate kernel; SVD updating

technique; Burton & Miller method

1. Introduction

The method of fundamental solutions (MFS) is a

numerical technique as well as finite difference method
(FDM), finite element method (FEM) and boundary
element method (BEM). It is well known that the
method of fundamental solutions can deal with many
engineering problems when a fundamental solution is
known. This method was attributed to Kupradze in 1964
[1]. The method of fundamental solutions can be applied
to potential [2], Helmholtz [3], diffusion [4], biharmonic
[5] and elasticity problems [1]. The method of
fundamental solutions can be regarded as one kind of
meshless method. The basic idea is to approximate the
solution by a linear superposition of fundamental
solution with sources located outside the domain of the
problem. It has some advantages over boundary element
method, e.g., no boundary integrals, no singularity and
mesh-free model.

In boundary element method, Tai and Shaw [6] first
employed the complex-valued BEM to solve membrane
vibration. De Mey [7], Yas’ko [8], Hutchinson and
Wong [9] employed only the real-part kernel to solve the
membrane and plate vibrations, respectively. Although
the complex-valued computation is avoided, they faced
the occurrence of spurious eigenequations. One has to

investigate the mode shapes in order to identify and
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reject the spurious ones. If we usually need to look for
the eigenmode as well as eigenvalue, the sorting for the
spurious eigenvalues pay a small price by identifying the
mode shapes. Chen et al. [10] commented that the
detection of spurious modes may mislead the judgment
of the true and spurious ones, since the true and spurious
modes can have the same nodal line by observation in
case of different eigenvalues. This is the reason why
Chen and his coworkers have developed many
systematic techniques, e.g., dual formulation [10],
domain partition [11], SVD updating technique [12],
CHEEF method [13], for sorting out the true and the
spurious eigenvalues. Spurious eigenvalues occur when
real-part BEM, imaginary-part BEM and MRM are
employed to solve the eigenproblem of simply
connected domain. For multiply-connected problems,
spurious eigenvalues still occur even though the
complex-valued BEM is utilized. The occurrence of
spurious eigenvalues and its treatment have been studied
in the membrane and acoustic problems [14, 15].

In meshless method, Kang et a/. proposed so-called
nondimensional dynamic influence function (NDIF) to
solve membrane [16] and plate vibration [17]. They also
faced the problem of spurious eigensolutions. Therefore,
they addressed the net approach to filter out the spurious
eigenvalues. Later, Chen et al. commented that the
NDIF is the special case of imaginary-part MFS for
membrane [18] and plate [19]. Although MFS has been
applied to solve many engineering problems, most of
them are for cases with simply-connected domains.
Chen et al. have tried to solve the eigenproblem of
annular membrane and found that spurious eigenvalues
also appear. We may wonder what happen for the plate
case instead of membrane.

In this paper, the method of fundamental solutions
for solving the eigenfrequencies of annular plate is
proposed. The occurring mechanism of the spurious
eigensolution of an annular plate is studied analytically.

The degenerate kernels and circulants are employed to
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determine the spurious eigensolution. In order to filter
out the spurious eigenvalues, singular value
decomposition updating technique and Burton & Miller
method are utilized. An annular case is demonstrated

analytically to see the validity of the present method.

2. Formulation of annular problem using the method
of fundamental solutions
The governing equation for an annular plate
vibration in Fig.1 is the biharmonic equation as follows:
Viu(x) =2'u(x), xeQ, 1)
where v* is the biharmonic operator, « is the lateral

2
displacement, /14=w—p°h, A is the frequency
D

parameter, @ is the circular frequency, p, is the

surface density, D is the flexural rigidity expressed as
3

po_ B

12(1-v*°)

Possion ratio v and the plate thickness 4, and Q is

in terms of Young’s modulus E, the

the domain of the thin plate.

The kernel function U_(s,x) is the fundamental
solution which satisfy

VAU, (s,x) = AU, (5,x) ==5(x —5), 2)
where &(x —s) is the Dirac-Delta function, and s and

x are the source and field points, respectively. We have

U (s,x) = —é[Hé” (ir) — HO (i49)]

i ) ©)
= [Y,(Ar) = iJ, (Ar) + = K, ()],
81 w

where 7 =[s—x|, i’ =-1, H®(4r) is the first

kind zeroth-order Hankel function, J, (4r) and
Y, (Ar) are the first kind and second kind zeroth-order
Bessel functions, respectively, and K (Ar) is the
second kind zeroth-order modified Bessel function.
Because the first kind modified Bessel function 7, (Ar)
is the homogeneous solution of the biharmonic operator,
we can add it to the fundamental solution for satisfying

the Hilbert transform of causal constraint. Then, the
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complete kernel function U(s, x) is shown below:
1 . 2 .
U(s,x) = @[Y0 (Ar)—iJy(Ar) + ;(KO (Ar)—il,(Ar))]. (4)

Based on the definition of MFS, we can represent the

displacement field of plate vibration by

2N 2N
u(xi)zzp(sj7x[)¢j+ZQ(Sj'xi)¢j ! (5)
Jj=1 Jj=1
where 2N is the number of fictitious source nodes. ¢

and ¢, are the known densities with respect to P and

Q. The two kernels (P and Q) are obtained from either
the two of the kernel U(s,x) and the following three

kernels,
O(s,x) =N, (U(s,x)), (6)
M(s,x) =N, (U(s,x)), (7
Vs, x)=N,U(s, x)), (8)

where §,(-), N, () and X () mean the operators

which are defined as follows:

o0 ©)
%,0=20,
N () =W () +1-v) aa;(z') , (10
%0="040-02C0)

where n and ¢ are the normal vector and tangential vector,
respectively. The operators in Egs.(9), (10) and (11) can
be applied to U, ®, M and ¥ kernel to generate sixteen
kernels as shown in Fig. 2. Three operators can be also

applied to Eq.(5), and we have

O(x) =N, (u(x)) (12)
m(x) =N, (u(x)) (13)
v(x) =R, (u(x)) (14)

where &, m and v denote the slope, normal moment
and effective shear force, respectively. For the purpose
of deriving the exact eigensolution, we consider the
annular plate. The radii of inner and outer circles are a
and b for the real boundary, respectively. The source
strengths are distributed on the inner and outer fictitious
boundaries of radii a’ and b' in Fig.3, respectively.

For demonstrating the validity of this approach, we

consider the clamped case (u=0 and € = 0) by using U
and ® kernels. We distributed 2N field points at each
real boundary, and the same 2N sources are distributed
on the fictitious boundary. By matching the boundary
condition, Eq.(5) can be obtained and can be written in a

matrix form as follows:

{O}Z{Ull U12H¢1}+[®11 @12}{(/)1}' (15)
0 U2l U22||¢2 021 022||p2

where {¢g1} , {42} , {p1} and {p2} are the
generalized coefficients for B; and B, with dimension
2N x1, the matrices [Uj] and [®ij] mean the
influence matrices of U and ® kernels which are
obtained by collocating the field and source points on B;

and B’ with a dimension 2N x2N , respectively.

Similarly, the Eq.(12) can be rewritten as

0] _[u1t, v12,7[a] feit, ©12,]fel]
of |v21, U22,||¢2] |©21, ©22,]| 02 (16)

where the matrices [Uij,] and [®ij,] mean the
influence matrices of U, and ®, kernels which are
obtained by selecting the field and source points on B;

and B’ with a dimension 2N x 2N, respectively. By
assembling the Eqgs.(15) and (16) together, we have

gl

¢

2
[SM*] ={0} a7
ol

P2
where the superscript “cc” denotes the clamped-clamped
case and

vll Ul2 611 612

" U2l U222 021 022
[SM“]= (18)
Ull, Ul12, 011, 012,

U21, U22, 021, ©22

0 18Nx8N

For the existence of nontrivial solution, the determinant

of the matrix versus the eigenvlaue must be zero, i.e.,
det[SM“]=0 (19)

By plotting the determinant versus the frequency

parameter, the curve drops at the positions of

eigenvalues.
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3. Mathematical analysis of true and spurious
eigenvalues
For the kernel

x=(p,¢)and s=(R,H) in terms of polar coordinate.

function, we can express

The U kernel can be expressed by using degenerate

kernels as shown below:

U RGP = 3 S GO, R -0, (R)]
" (20)
20" L G K, GR) -t ZReos(m@ -4, R>p.
VAR Op )= 3, oA, R, () =10, ()]
(21)

+§(—1)”' LARIY"K,, (Ap) ~ il (Ap)}cos(m(@—#), R<p,
where the subscripts “/ ” and “E ” denote the interior (R
> p) and exterior domains (R < p), respectively.
Similarly, other kernels, ® , U, and ©®, , are

obtained as follows:

O (RG:p.f)= 3. o, PR T (R)]
" (22)
20" 1 G K GR) -, R Yeos(m@ -4, R>p.

O (ROpf)= 3 o LURIY, Up)-id, ()]
(23)
20" LRI K, o) it Gpeos(n(0-9), R<p,

VIR Gp )= 3. AL ORI, (R -, ()] o)
" 24
20 LG K, GR) -t ZRYeos(n@ -4, R>p.

Uy (RGiph) =3, 8%{%" (AR, (2p) =i/, (2p)]

+ % D" 1, ARI(D)" K, (Ap) — il (Ap)]}cos(m(6 - ),

(25)

R<p

U'RGp)= %{J;, APV, (AR) s, (2R)]
(26)

+ % D" 1, o)D" K, (AR) — il (AR)[}cos(m(6 - 4))., R > p

U (R.0;p.9) = Z %{J”’, (R)IY, (p) =i/, (2P)]
(27)

+§(—1)"‘ LGRI(D" K, (Ap) ~il,, (Ap)]}eos(m(6~ ), R < p.
Since the rotation symmetry is preserved for a circular
boundary, the sixteen influence matrices in Egs.(15) and
(16) are all symmetric circulants. We have the influence

matrices [U11],

) a a, A2 oy

AN a4 a Ayy3 oy

[Ull]: dyn_2 Yoy G dyn_4 Gon_3 (28)

a, a, as Ayn_a ay

where the elements of the first row can be obtained by
a;, ,=ULls;,x,). (29)

The matrix [U1!1] in Eq.(28) is found to be a circulant

since the rotational symmetry for the influence

coefficients is considered. By using the degenerate

kernel and the orthogonal property, the eigenvalue of the
matrices [U11], [U12], [U21] and [U22] can be obtained

as follows:

m

v _ T];{Jm (Aa"[Y, (Aa) —iJ ,(Aa)]+

: (30)
~ I,(Aa)[K, (Aa) - (-1)"il,,(Aa)]},
= N Ga)y, (b - i, (b)) +
47
; (31)
I, (Aa)[K,, (AD") = (=D)"il,,(AD")]},
A = N oy Gany, (ab) - id, (b)) +
47
; (32)
~ I, (Aad)[K, (Ab) — (=1)"il, (Ab)]},
- N g b)Y, (k) i, ()] +
47 )

2

m

(A)[K,, (A6") - (=1)"il,, (A6)]}.

where m=0,+1,£2,---,+(N -1), N.Similarly, the
eigenvalue of the other twelve matrices can be obtained.
By using the similar transformation, we can decompose

the [U11] matrix into

[U11]= @z, 0", (34)
where “H” is the transpose conjugate,
Siyay = diag (A AAG - ATPAT), (35)
and
O G N Y e L Gt
B A A D
‘D:ﬁ%(‘)-) T T @ gy

1 (eFFIANYIN-2 (pramiaNyIN-2

1 (eFTIINYNTL (grRRIAVYINCL (oo Di2N 2N

(e 2W VRN YN -2 (aNmil2N Y2N-2

2Nzil2N \2N -1
(e )

Similarly, the other fifteen matrices can be decomposed.

Equation (18) can be decomposed and rearranged into

H

® 0 0 0 2[!/'11] Z[1;12] Z[011] z:[012] ® 0 0 O
0 ® 0 0 z[uz1] E[L‘ZZ] 2[(—)21] Z[z—)22] 0 ® 0 0
SM“ |= .
[ ] O 0 (I) 0 Z[L'll,,] 2[L/12,,] 2[l-Jll,,] 2[(-)12“] 0 0 q) 0 (37)
0 0 0 @f[Zua, Zwz, Zeag Zeza] [0 0 0 @
Since @ is unitary, the determinant of [SM“] is
Z[U11] Z[Ulz] 2[(-)11] 2[@12]
det[SM”]:det 2[021] 2[Uzz] 2[@21] Z[@22]
z:[1/110] z:[(/12(;] 2[(‘)11(;] Z[(‘)121/]
Z[UZ1a] Z[UZZO] 2[921/7] Z[@220] 8Nx8N
N
ve
=[] detqr10seeD, (38)
m=—(N-1)

where
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J,(Aa) Y, (a) 1,(4a) K,(%a)
wq | Jn(AD) Y, (2D) I,(Ab) K, (Ab)
[7,1=| , , . (39)
J,(Aa) Y (Aa) I, (la) K, (Za)
J,,(Ab) Y, (Ab) I, (Ab) K, (Ab)
and
— i, (2d) Y, (Ab) —iJ,, (Ab") —iJ!,(2a) Y. (Ab) — i (Ab")
J,(2d") 0 J! (2d') 0
21| - (o2 .Gy 2= o, om) LG 2o - i) (40)
21 o) 0 21 () 0

It is noted that the matrix [7:“] denotes the matrix of

true eigenequation for the C-C case and the matrix
[S,’f] denotes the matrix of spurious eignequation in

the U and ® formulations. Zero determinant in the

Eq.(38) implies that the eigenequation is
det([7,°1[S,,°1) =0 (41)

After comparing with the analytical solution for the
annular plate [20], the former matrix [7“] in the

Eq.(41) results in the true eigenequation while the latter
matrix [S,’,f@] results in the spurious eigenequation.
The spurious eigenvalues occur when det[S“®]=0.
The second matrix in Eq.(41) can be further decomposed

into

det[SV°] = det[S, (a)]det[S, ()] =0, (42)

where
e 21J,(Aa") J) (Ad’
detfs, (@)= 2|/ )
|, (Aa") 1] (Aa")
and
N 2 Y, (Ab")—iJ, (Ab") Y (Ab") —iJ] (Ab")
aats. =2 G e e @0

Since det[ S, (b')] is never zero, the spurious

eigenequation depends on a'. It is noted that the
spurious eigensolution happens to be true eigensolution
of the clamped circular plate with a radius a' .
Therefore, the positions of spurious eigenvalues for the
annular problem depend on the location of inner
boundary a' where the

fictitious sources are

distributed. Problems subject to different boundary

TV = T NSRRI AT N = S e

conditions on the outer and inner boundaries (C-S, C-F,
S-C, S-S, S-F, F-C, F-S and F-F in which S and F denote
simply-supported and free boundary conditions,
respectively) are also solved. All the results for different
boundary conditions of the annular plate are shown in
Table 1.
4. Treatment of spurious eigenvalues

4.1 SVD updating technique

In order to extract out the true eigenvalues, the
SVD updating technique is utilized. In spite of the U and
® formulations to obtain Eq.(16), we can also select
the M and ¥ formulations and obtain
#'1 M1l M12 vil V12 (41
¢2| | M21 M22 V21 V22 (|42
o1 | M1, M12, Vi1, V12, | 1
2| |M21, M22, V21, V22,||¢2

[SM] © (45)

where {p"}, {¢'2}, {¢'} and {p'2} are the
generalized coefficients for B; and B, with dimension
2N x1 using M and ¥V formulations. By employing the
relation in the degenerate kernels between direct and
indirect methods, the SVD updating document (Indirect
method) to extract out the true eigenequation is
equivalent to the SVD updating term (Direct method).
We have
ce\H

[C]{gﬁf{;ﬁ] e)
For the existence of nontrivial solutions, the rank of the
matrix [C] must be smaller than 8N. By using the

property of Eq.(37), the matrix can be written as

(47)

® 0000 0 0 0)[Zpi Zwa Zewn Zwo
0@ 0 0 0 0 0 0| 2Zuy Zpw Zwpe) Zwz
00 ® 0 0 0 0 0fZey Zew Zou Zeu|[®* 0 0 0
00 0 ® 0 0 0 0| Ziery Zerm 2o,y 2pez|| 0 ®* 0 0
1515 0 0 0 @ 0 0 oflx b by 3 {0 0 o' 0
[M11) [Mm21] [M11,) [M21,]
00 0 0 0 @ 0 0|Zpy Xz Zweg Zwza|[ 0 0 0 @F
00000 0 @& 0f Ty Zpay Zpuy Zpaw
00000 0 0 @Zpy Ty Zpwy oz

Based on the equivalence between the SVD technique
and the least-squares method, we can obtain the true

eigenequation
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J (Aa) Y, (i) I,(la) K,(a)
J,(Ab) Y (Ab) I,(Ab) K, (Ab)
Ji(Aa) Y.(Aa) I,(a) K. (ia)|
Ji(Ab) Y (Ab) I.(Ab) K. (Ab)

(48)

This indicates that only the true eigenvalues for annular

plate are imbedded in the SVD updating matrix.

4.2 Burton & Miller method

By employing the Burton & Miller method for
dealing with fictitious frequency, we extend this concept
to suppress the appearance of the spurious eigenvalue of
the annular plate in the method of fundamental
solutions.

By assembling the Egs.(17) and (45) with an

imaginary number, we have
cc .| cc l/ll
[[sae =<1+ itsn; ]]{WZ} ={0} (49)

wherethe w1 and w2 are the mixed densities. Thus,
the true eigenequation
J,(Aa) Y, (k) I,(la) K, (Aa)
J,(Ab) Y (Ab) I,(Ab) K, (Ab)
J,(Ga) Y, (a) I,(a) K, (ia)
J,,(Ab) Y, (4b) I, (Ab) K, (4b)

(50)

is obtained. After comparing Eq.(48) with Eq.(50), we
can find that true eigenequations are the same either by
using the SVD updating technique or by using the
Burton & Miller method.

6. Conclusions

The mathematical analysis has shown that spurious
eigenvalues occur by using degenerate kernels and
circulants when the method of fundamental solutions is
used to solve the eigenvalue of annular plates. The
positions of spurious eigenvalues for the annular
problem depend on the location of inner fictitious
boundary where the sources are distributed. The
spurious eigenvalues in the annular problem are found to

be the true eigenvalues of the associated

simply-connected problem bounded by the inner sources.
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We have employed the SVD updating technique and
Burton & Miller method to filter out the spurious

eigenvalues successfully.
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with respect to s

N, () l N, () l N, ()

— U(s, x) O(s, x) M (s,x) V(s,x)
. Ng'
Wit L0 6 06 M) Fed)
respect
to N, ()

. — U, (s,x) O, (s,x) M, (s,x) V. (s, x)

N, ()
— U (s,X) O, (s,x) M (s,x) V. (s,x)

Fig. 2 The relation of sixteen kernels
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Table 1 True eigenequations for the annular plate

Cases True eigenequation

J,(Aa) Y, (la) I,(Aa) K, (Aa)
J,(Ab) Y, (Ab) I,(Ab) K, (4b)

cc J(Ga) Y.(da) I'(Aa) K. (Aa)
JL(Ab) Y.(3b) I,(ab) K. (Ab)
J,(Aa) Y (Aa) 1,(la) K, (la)

s J,(Ab) Y (Ab) I,(Ab) K, (AD) 0

al(la) a)(la) al(la) a)(la)
J,(Ab) Y, (Ab) I, (Ab) K, (Ab)

al(la) al(la) al(ia) af(ia)
C.F J,(Ab) Y (Ab) I,(Ab) K, (Ab) 0
B, (Aa) B, (Aa) p,(1a) B, (la)
J(Ab) Y (Ab) I, (Ab) K| (Ab)

J, (Aa) Y, (la) I,(la) K, (Aa)
JLB) Y, 1,08 K,GB)
>C J(da) Yi(da) I.(a) K. (ia)|

al(b) al(b) al(ib) aX(b)

J,(Aa) Y (la) 1,(la) K, (a)
J,(Ab) Y (Ab) I, (Ab) K, (4b)

>3 ol (ia) al(da) al(ia) a*(da)
ol(iB) ol (ib) al(ib) X (ib)
alia) ol (ia) al(da) af(ia)

o J,(b) Y,(8) 1,G) K,(B)

B, (2a) B, (a) p,(da) B, (la)
a, () a,(b) a,(ib) a, (D)

J.(ld) Y,(da) I,(a) K,(la)
al(Ab) al(Ab) al(Ab) al (1) o
F-C T (d) Y'(da) I'.(a) K. (@)

B, (Ab) B, (b) B, (Ab) B, (4b)
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J,(Aa) Y,(Aa) I,(da) K,(la)
al(Ab) a)(Ab) al(Ab) al (Ab) 0
i i) @) al(ia) ak(ia)
B, (Ab)  p,(Ab) B, (Ab) B, (Ab)
a,(la) a,(la) a,(la) a,(la)
L a’(Ab) a)(Ab) al(Ab) aX (1b) g
B, (Aa) B, (Aa) p,(ia) B, (a)
B, (Ab) B, (Ab) p,(Ab) B, (Ab)
where
J - v 3 m?v
a, (Aa) =T}, (Aa) + -, (4a) Gy J (la),
a’ (Ga) = Y"(la) +%Y,; (Aa) — (’Z ;’2 Y (la),
o0, (ha) = 11, (Aa) + 1, (Aa) - (’:) 1, (Aa),
X - Vo 3 m?v
@ (2a) = K, (ja) + K., (4a) Gy K, (Ja),
J - 1, 1 m?(3-v) _m2(2—v) ,
fo(2a) =T} (Aa) +—J ! (Aa) G J' (la) + iy J (la) o J' (Aa),
v o 1., 1 m*(3-v) _m2(2—v) ,
f(Aa) =Y, (Aa) + ¥, (Ja) oy Y (Aa) + o Y (la) o Y' (Aa),
/ ow 1 . 1 m*(3-v) _m2(2—v) ,
fu4a) = I} (Ga) + I (a) oy I’ (Aa) + o I (Ja) o I' (Ja),
BX(Ja) = K" (Ja) +%K,’; (la) - ( ;)2 K' (Aa)+ m(i)}” K. (Ja) —%K,’n (Ja).



