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Abstract 

In this paper, a semi-analytical approach is proposed 
to solve the scattering problem of flexural waves and 
dynamic moment concentration factors in an infinite 
thin plate with multiple circular holes by using the 
null-field integral formulation in conjunction with 
degenerate kernels and Fourier series. In the proposed 
approach, all the kernels in the direct formulation are 
expanded into degenerate forms. By uniformly 
collocating points on the real boundary, a linear 
algebraic system is constructed. The scattering problem 
can be solved by decomposing it into two parts: 
incident wave field and radiation field. The radiation 
field is solved by using the proposed method and then 
the total field is obtained by adding it with the incident 
wave field. The results of dynamic moment 
concentration factors for the plate with one hole are 
compared with the analytical solution to verify the 
validity of the proposed method. For the cases of small 
wave number, the quasi-static results of a plate with 
one or multiple circular holes are compared with the 
static data of finite element method (FEM) using 
ABAQUS. The effect of distance between the centers 
of holes on dynamic moment concentration factors is 
also investigated by using the proposed method. 
  

Keywords: scattering, flexural wave, dynamic moment 
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1. Introduction 
Thin plates with multiple circular holes are widely 

used in engineering structures, e.g. missiles, aircraft, 
etc., either to reduce the weight of the whole structure 
or to increase the range of inspection. Geometric 

discontinuities due to these holes result in the stress 
concentration, which reduce the load carrying capacity. 
The deformation and corresponding stresses produced 
by the dynamic force are propagated through the 
structure in the form of waves. At the irregular interface 
of different media, stress wave reflects in all directions, 
which is the phenomenon of scattering. It turns out that 
the scattering of the stress wave results in the dynamic 
stress concentration [1]. 

Nishimura and Jimbo [2] were two of the early 
investigators for the analytical study of the dynamic 
stress concentration. Pao [3] studied the scattering of 
flexural waves and dynamic stress concentrations 
around a circular hole, and proposed an analytical 
solution. Since then, most research work has focused on 
the scattering of elastic wave and dynamic stress 
concentration and has led to a rapid development of 
analytical or numerical approach such as the method of 
wave function expansion, complex variable method, 
boundary integral equation method (BIEM) and 
boundary element method (BEM) [1]. 

Kung [4] studied dynamic stress concentrations 
resulting from the scattering of flexural waves on the 
thin plate with one circular hole and gave the 
calculations of moment and shear forces as a function 
of frequency. Liu et al. [5] extended the complex 
variable function approach for statics to the case of 
dynamic loading. The complex variable function 
approach and conformal mapping technique were 
employed to solve diffraction problem of flexural 
waves by two cutouts [6] and dynamic concentration 
factors of plates with two circular holes were presented. 
Vernon et al. [7] applied the wave function expansion 
method to study the scattering properties of a single 
coated cylindrical anomaly located in a thin plate on 
which flexural waves propagate. Hayir et al. [8] applied 
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the image method to analyze the scattering and 
dynamic stress concentrations of elastic waves in plates 
with a circular hole subject to plane harmonic SH wave. 
Gao et al. [9] studied the scattering of flexural waves 
and calculated the dynamic stress concentration in the 
thin plate with the cutout by using the dual reciprocity 
boundary element method. Hu et al. [10] applied the 
image method and the wave function expansion method 
to study the multiple scattering of flexural waves in 
semi-infinite plates with a circular cutout. Recently, 
one monograph is devoted to discussing the multiple 
scattering in acoustics, electromagnetism, seismology 
and hydrodynamics [11].   

From literature reviews stated previously, few papers 
except [6] have been published to date reporting the 
scattering of flexural wave in plate with more than one 
cutout. Furthermore, as Kobayashi and Nishimura [12] 
pointed out that the integral equation method seems to 
be most effective for two-dimensional steady-state 
flexural wave. In the paper, the boundary integral 
method is devoted to solving the multiple scattering of 
flexural wave and dynamic stress concentrations in 
plate with multiple circular holes.  

It is noted that improper integrals on the boundary 
should be handled particularly when the BEM or BIEM 
is used. In the past, many researchers proposed several 
regularization techniques to deal with the singularity 
and hypersingularity [13]. In this paper, instead of 
using the previous concepts, the kernel function is 
recast into the degenerate kernel which is expanded into 
a series form on each side (interior and exterior) of the 
boundary by employing the addition theorem. 
Therefore, degenerate kernel, namely separable kernel, 
is a vital tool to study the perforated plate. Based on the 
direct boundary integral formulation, Chen et al. [14-16] 
recently proposed null-field integral equations in 
conjunction with degenerate kernels and Fourier series 
to solve boundary value problems with circular 
boundaries.  

This paper presents a semi-analytical approach to 
solve scattering of flexural waves and dynamic moment 
concentration factors in a thin plate with multiple 
circular holes. A linear algebraic system will be 
constructed by taking finite terms of Fourier series after 
uniformly collocating points on the boundary. After 
determining the Fourier coefficients of unknown 

boundary density, the displacement and corresponding 
section force produced by the incident flexural wave 
are determined by using the boundary integral 
equations for the domain point. For the plate problem, 
the slope (bending angle) and moment in the normal 
and tangential directions for the multiply-connected 
domain problem are determined with care under the 
adaptive observer system. Therefore, the operator of 
transformation matrix for the slope and moment is 
adopted to deal with this problem. Finally, the obtained 
result for an infinite plate with one circular hole is 
compared with the analytical solution [4] to verify the 
validity of the present method. For the cases of small 
wave number, the results for more than one hole will be 
compared with those of FEM using ABAQUS [17] to 
demonstrate the generality of the proposed method. 
Finally, the effect of central distance between holes on 
dynamic moment concentration factors is also 
investigated efficiently by the proposed method. 

2. Problem statement and boundary 
integral formulation 

2.1 Problem statement  
The governing equation of the flexural wave for a 

uniform thin plate with randomly distributed circular 
holes as shown in Figure 1 is written as follows: 

4 4( ) ( ),u x k u x x Ω∇ = ∈  (1)
where u is the out-of-plane elastic displacement, 

4 2
0h/Dk ω ρ= , k( 2π /wave length) is the wave number 

of elastic wave, ω  is the circular frequency, 
0ρ  is 

the volume density, 3 2D Eh /12(1-v )= is the flexural 
rigidity, E denotes the Young’s modulus, v  is the 
Poisson ratio,  h is the plate thickness and Ω  is the 
domain of the thin plate. 

2.2 Boundary integral equation for the collocation 
point in the domain 

The integral representation for the plate problem can 
be derived from the Rayleigh-Green identity [18] as 
follows: 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

u x U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v  
(2) 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

x U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

θ θ

θ θ

θ Θ

θ

= −

+ −

∫ ∫

∫ ∫

v  
(3) 
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( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )

m m
B B

m m
B B

m x U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v  
(4) 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )

v v
B B

v v
B B

x U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

x

Θ

θ

Ω

= −

+ −

∈

∫ ∫

∫ ∫

v v

                                                      

(5) 

where B is the boundary of the domain Ω , u(x), ( )xθ , 
m(x) and ( )v x  are the displacement, slope, moment 
and shear force. s  and x  mean the source and field 
points, respectively. The kernel functions ( , )U s x , 

( , )s xΘ , ( , )M s x , ( , )V s x , ( , )U s xθ , ( , )s xθΘ , 
( , )M s xθ , ( , )V s xθ , ( , )U s xm , ( , )m s xΘ , ( , )mM s x  , ( , )mV s x , 

( , )U s xv , ( , )s xΘv , ( , )M s xv  and ( , )V s xv  in Eqs.(2)-(5) 
can be expanded to degenerate kernels by separating 
the source and field points and will be elaborated on 
later. The kernel function ( , )U s x  in Eq.(2) is the 
fundamental solution which satisfies 

4 4( , ) ( , ) ( )U s x k U s x δ s x∇ − = −  (6)
where 4∇  is the biharmonic operator and )( x-sδ  is 
the Dirac-delta function, respectively. The fundamental 
solution is 

2

1 2( , ) ( ) ( ) ( )
8 0 0 0U s x Y kr iJ kr K kr ,

k π
⎡ ⎤
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

 (7)

where xsr −≡ and 12 −=i . The other three 
kernels ( , )s xΘ , ( , )M s x  and ),( xsV  in Eq.(2) can 
be obtained by applying the following slope, moment 
and effective shear operators defined by 

( )
ΘK

n
∂ ⋅

=
∂

 (8)

( )( ) (1 )
2

2
M 2

K D
n

ν ν
⎡ ⎤∂ ⋅⎢ ⎥=− ∇ ⋅ + −⎢ ⎥∂⎢ ⎥⎣ ⎦

 
(9)

( ) (1 ) ( )2
VK D

n t n t
ν

⎡ ⎤⎞⎛ ⎞⎛∂ ∂ ∂ ∂ ⎟⎟⎜ ⎜⎢ ⎥⎟⎟=− ∇ ⋅ + − ⋅⎜ ⎜ ⎟⎟⎢ ⎥⎜ ⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 
(10)

to the kernel ( )xs,U  with respect to the source point, 
where / n∂ ∂ and� / t∂ ∂ are the normal and tangential 
derivatives, respectively, 2∇  means the Laplacian 
operator. In the polar coordinate of ( θR, ), the three 
kernel functions can be rewritten as: 

( , )( , ) ( ( , ))Θ ,s
U s xΘ s x K U s x

R
∂

= =
∂

 (11)

2 ( , )( , ) ( ( , )) ( , ) (1 )
2

M,s s 2
U s xM s x K U s x D ν U s x ν

R

⎡ ⎤∂⎢ ⎥= =− ∇ + −⎢ ⎥∂⎢ ⎥⎣ ⎦

 (12)

( )
,s

2

( , ) ( ( , ))

1 1 ( , )  ( , ) (1 )

V

s

V s x K U s x

U s xD U s x
R R R R

ν
θ θ

=

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − ∇ + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 
(13)

The expressions for ( ), ( )x m xθ  and ( )v x  in 

Eqs.(3)-(5), obtained by applying the operators in 
Eqs.(8)-(10) to u(x) in Eq. (2) with respect to the field 
point x( ,ρ φ ), are 

,
( )( ) ( ( ))x

u xx K u xΘθ
ρ

∂
= =

∂
, 

(14)

2
2

, 2

( )( ) ( ( )) ( ) (1 )M x
u xm x K u x D u xν ν
ρ

⎡ ⎤∂
= = − ∇ + −⎢ ⎥∂⎣ ⎦

, 
(15)

( )
,

2

( ) ( ( ))

1 1 ( )( ) (1 )

V x

s

x K u x

u xD u x ν
ρ ρ φ ρ ρ φ

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − ∇ + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

　　　

v
, 

(16)

By the same way, the kernel functions ( , )U s xθ , 
( , )s xθΘ , ( , )M s xθ  , ( , )V s xθ , ( , )U s xm , ( , )m s xΘ , 
( , )mM s x  , ( , )mV s x , ( , )U s xv , ( , )s xΘv , ( , )M s xv  and 

( , )V s xv  can be obtained by applying the operators in 
Eqs.(8)-(10) respectively to the kernel functions U, Θ , 
M and V with respect to the field point x( ,ρ φ ). 

2.3 Null-field integral equations 
The null-field integral equations derived by 

collocating the field point outside the domain 
(including the boundary point if exterior degenerate 
kernels are adopted) are shown as follows: 
0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v
 (17)

0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

θ θ

θ θ

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v
 (18)

0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )

m m
B B

m m
B B

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v
 (19)

0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( ),

,

v v
B B

v v
B B

C

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

x B

Θ

θ

Ω

= −

+ −

∈ ∪

∫ ∫

∫ ∫

v

                                     

 (20)

where CΩ  is the complementary domain of Ω . 
Once kernel functions are expressed in proper 
degenerate forms, which will be described in the next 
subsection, the collocation points can be exactly located 
on the real boundary, that is x∈ BC ∪Ω . Since the 
four equations of Eqs.(17)-(20) in the plate formulation 
are provided, there are 6 ( 4

2C ) options for choosing any 
two equations to solve the problems. Kernels in Eq.(20) 
involve higher-order derivatives, which may decrease 
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both the convergence rate and computational efficiency. 
For the purpose of computational efficiency, Eqs. (17) 
and (18) are used to analyze the plate problem. 

2.4 Degenerate kernels and Fourier series for 
boundary densities  

In the polar coordinate, the field point and source 
point can be expressed as ( φρ , ) and ( θR, ), 
respectively. By employing the separation technique for 
the source and field points, the kernel functions 

),( xsU  are expanded in the series form as follows: 

( )

( )

2
0

2
0

1( , ) { ( ) ( )
8

2 ( ) ( )}

1( , ) { ( ) ( )
8

2 ( ) ( )}

I
m m m

m

m m

E
m m m

m

m m

U s x ε J kρ Y kR
k

               I λρ K kR cos m θ φ  , ρ R
π

U s x ε J kR Y kρ
k

                I kR K kρ cos m θ φ  , ρ R
π

∞

=

∞

=

=

⎡ ⎤+ − <⎣ ⎦

=

⎡ ⎤+ − ≥⎣ ⎦

∑

∑

 

(21)

where mε  is the Neumann factor ( mε =1, m=0 ; 

mε =2, m=1,2, ,∞) and the superscripts "I" and "E" 
denote the interior and exterior cases for the degenerate 
kernel ),( xsU  to distinguish <Rρ  and >Rρ , 
respectively. The degenerate kernels ( , )s xΘ , ( , )M s x  
and ( , )V s x  in the null-field boundary integral 
equations can be obtained by applying the operators of 
Eqs.(11)-(13) to the degenerate kernel ( , )U s x  of 
Eq.(21). 

In order to fully utilize the geometry of circular 
boundary, the displacement u(s), slope ( )sθ , moment 
m(s) and shear force ( )sv  along the circular 
boundaries in the null-field integral equations can be 
expanded in terms of Fourier series, respectively, as 
shown below: 

( ) ( cos sin ),0

M

c cn sn
n 1

u s u u n u n s Bθ θ
=

= + + ∈∑ , (22)

0
1

( ) ( cos sin ),
M

c cn sn
n

s n n s Bθ θ θ θ θ θ
=

= + + ∈∑ , (23)

0
1

( ) ( cos sin ),
M

c cn sn
n

m s m m n m n s Bθ θ
=

= + + ∈∑ , (24)

0
1

( ) ( cos sin ),
M

c cn sn
n

s n n s Bθ θ
=

= + + ∈∑v v v v , (25)

where  0cu , cnu , snu , 0cθ , cnθ , snθ , 0cm , cnm , 
snm , 0cv , cnv  and snv are the Fourier coefficients 

and M is the number of Fourier series terms. 

3 Adaptive observer system and 
transformation of tensor components 

3.1 Adaptive observer system 
Consider an infinite plate with circular holes as 

shown in Fig. 1. Since the direct boundary integral 
equations are frame indifferent (i.e. rule of objectivity), 
the origin of the observer system can be adaptively 
located on the center of the corresponding boundary 
contour under integration. Adaptive observer system is 
chosen to fully employ the circular property, which 
takes the full advantage of both Fourier series to 
represent boundary variables and degenerate-kernel 
expressions in the polar coordinate. Figure 2 shows the 
boundary integration for the circular boundaries in the 
adaptive observer system. The dummy variable in the 
circular contour integration is the angle (θ) instead of 
radial coordinate (R). By using the adaptive system, all 
the boundary integrals can be determined analytically 
free of principal value senses.  

3.2 Transformation of tensor components 
Since the slope, moment and effective shear force are 

calculated in the plate problem, potential gradient or 
higher-order gradient needs to be manipulated with care. 
Special treatment for the potential gradient should be 
taken care as the source and field points locate on 
different circular boundaries. As shown in Figure 3, the 
angle iφ  of the collocation point xi is described in the 
center of the circle under integration and the angle cφ  
is described in the center of the circle on which 
collocation point is located. According to the 
transformation law for the components of tensor, we 
have 

( ) ( )( ) ( )
,

( ) ( )( ) ( )
n r

t θ

cos δ sin δ
-sin δ cos δ

⋅ ⋅⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ ⋅⎣ ⎦⎣ ⎦ ⎣ ⎦

 (26)

2 2

2 2

2 2

2
2

nn rr

tt

r

( ) cos ( ) sin ( ) sin( )cos( ) ( )
( ) sin ( ) sin ( ) sin( )cos( ) ( ) ,
( ) sin( )cos( ) sin( )cos( ) cos ( ) - sin ( ) ( )

θθ

θ

δ δ δ δ
δ δ δ δ

δ δ δ δ δ δ

⎡ ⎤⋅ ⋅⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ = − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ − ⋅⎣ ⎦ ⎣ ⎦⎣ ⎦nt

(27)

Based on Eqs. (26) and (27), the general rotated slope, 
normal bending and tangential bending moment kernels 
can be obtained by following operators: 

( ) ( )( ) ( )R
ΘK cos δ sin δ

n t
∂ ⋅ ∂ ⋅

= +
∂ ∂

 (28)

1 1

1

2
2 2

2
2

                     2

R
N

( )K D v ( )sin ( ) ( ) cos( )( )
n

( )sin( )( )
n t

ν δ δ ν

δ ν

⎧⎪ ∂ ⋅⎪⎡ ⎤=− + − ∇ ⋅ + −⎨⎢ ⎥⎣ ⎦⎪ ∂⎪⎩
⎫⎞⎛ ⎪∂ ∂ ⋅ ⎟⎪⎜ ⎟+ − ⎜ ⎬⎟⎜ ⎟⎜ ⎪∂ ∂⎝ ⎠⎪⎭

 

(29)

1 1

1

2
2 2

22

                                   2

R
T

( )K D v ( )cos ( ) ( ) cos( )( v )
n

( )sin( )( )
n t

ν δ δ

δ ν

⎧⎪ ∂ ⋅⎪⎡ ⎤=− + − ∇ ⋅ + −⎨⎢ ⎥⎣ ⎦⎪ ∂⎪⎩
⎫⎞⎛ ⎪∂ ∂ ⋅ ⎟⎪⎜ ⎟− − ⎜ ⎬⎟⎜ ⎟⎜ ⎪∂ ∂⎝ ⎠⎪⎭

 
(30)
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where ic -φφδ = . When the angle cφ  equals to the 
angle iφ  or the angle difference δ  equals to zero, 
Eqs.(28) and (29) are simplified to the Eqs.(14) and 
(15). Considering non-concentric cases, the degenerate 
kernels, ( , )U s xθ , ( , )s xθΘ , ( , )M s xθ , ( , )V s xθ  ( , )mU s x , 

( , )m s xΘ and ( , )mM s x can be obtained by applying the 
operators of Eqs.(28)-(29) to the degenerate kernel 

( , )U s x , ( , )s xΘ , ( , )M s x  and ( , )V s x with respect 
to the field point x. 

4 Linear algebraic system 
Consider an infinite plate containing H 

nonoverlapping circular holes centered at the position 
vector oj ( j =1, 2, ,H), as shown in Fig. 2 in which Rj 
denotes the radius of the jth circular region, jx is the 
collocation point on the jth circular boundary and Bj is 
the boundary of the jth circular hole. By uniformly 
collocating N (=2M+1) points on each circular 
boundary in Eqs. (17) and (18), we have 

{

}
1

0 ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( ), ,
j

H

j B

j

U s x s s x m s

M s x s V s x u s dB s x B

Θ

θ

=

= −

+ − ∈

∑ ∫ v  
(31)

{

}
1

0 ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( ), .
j

H

j B

j

U s x s s x m s

M s x s V s x u s dB s x B

θ θ

θ θ

Θ

θ

=

= −

+ − ∈

∑ ∫ v
(32)

It must be noted that U , Θ , M , Uθ  and θΘ  
are weakly singular, V and Mθ  are singular and Vθ  

is hypersingular [25] since we select the null-field point 
on the boundary in the real computation. The main gain 
by using the degenerate kernel in the BIE is that 
singular as well as hypersingular integrals due to the 
kernels can be transformed to the series sum free of 
facing principal values. The selection of interior or 
exterior degenerate kernel depends on  or R Rρ ρ< > , 
respectively, according to the observer system. For the 

jB  circular boundary integrals, the degenerate kernels 

of ( , )U s x , ( , )s xΘ , ( , )M s x , ( , )V s x , ( , )U s xθ , 
( , )s xθΘ , ( , )s xθM  and ( , )s xθV  are utilized and 

boundary densities ( )u s , ( )sθ , ( )sm  and ( )sv  

along the circular boundary are substituted by using the 
Fourier series of Eqs.(22)-(25), respectively. In the jB  

integration, the origin of the observer system is 
adaptively set to collocate at the center jo  from 

which the degenerate kernels and Fourier series are 
described. By using orthogonal property, a linear 

algebraic system can be written as follows: 
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(33)

where H denotes the number of circular boundaries. For 
brevity, a unified form [ ijU ] ( 1,2,3, ,i H=  and 

1,2,3, ,j H= ) denote the response of ( , )U s x  kernel on 
the ith circle due to the source on the jth circle. 
Otherwise, the same definition is for [ ijΘ ], [ ijM ], 
[ ijV ], [ ijUθ ], [ ij

θΘ ], [ ijMθ ] and [ ij
θV ] kernels. The 

explicit expressions for sub-vectors [ iu ]，[ iθ ],[ im ] 
and [ iv ] can be described as follows: 
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(34) 

The explicit expressions for the sub-matrices of 
[ ijU ], [ ijΘ ], [ ijM ], [ ijV ], [ ijUθ ], [ ij

θΘ ], [ ijMθ ] and 
[ ijVθ ] can be written as shown below: 

0 1 1 1 1 1 1 1 1 1 1

0 2 2 1 2 2 1 2 2 2 2

0 1 1
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ij ij ij ij
C N N C N N S N N MS N N N N

K K K K
K K K K

K

K K K K

ρ φ ρ φ ρ φ ρ φ
ρ φ ρ φ ρ φ ρ φ

ρ φ ρ φ ρ φ ρ φ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(35)

where K can be either one of U , Θ , M , V , Uθ , 
Θθ , θM and θV . The notations kφ  and 

kρ ( 1,2,3, ,k N= ) shown in Fig. 3 are the angle and 
radius of the k-th collocation point on the i-th circular 
boundary with respect to the center of the j-th circular 
boundary (the origin of the observer system) and the 
element of the sub-matrices can be determined by  

2

0
( , ) ( , ; , ) cos( )( ),ij

nC k k j j k k j j jK K R n R d         n=0,1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫
 (36)

2

0
( , ) ( , ; , ) sin( ) ( ),ij

nS k k j j k k j j jK K R n R d         n=1,2, ,M
π

ρ φ θ ρ φ θ θ= ∫
 (37)

in which the selection of interior or exterior degenerate 
kernel depends on the position of collocation point with 



第十六屆中華民國振動與噪音工程學術研討會 台北科技大學 中華民國九十七年五月二十四日 

 

 6

respective to the center of circle under integration as 
shown in Fig. 3 

5 Dynamic moment concentration factor 
and techniques for solving scattering 
problems 
Considering an infinite thin plate with multiple holes 

subject to incident flexural wave, the boundary 
conditions of the hole are free. For this scattering 
problem, it can be decomposed into two parts, (a) 
incident wave field and (b) radiation field, as shown in 
Fig. 4. For matching the boundary condition, the 
radiation boundary condition in part (b) is obtained as 
the minus quantity of incident wave function, e.g. 

;R I R Im m= − = −v v  for the free edge where the 
superscripts R and I denote radiation and incidence, 
respectively. By substituting the known radiation 
boundary conditions, Im− and I−v , into the left hand 
side of Eq. (33), the unknown boundary data, u and θ , 
can be solved. After calculating the displacement, slope, 
moment and effective shear force along the boundary, 
the radiation field can be solved by employing the 
boundary integral equation for the domain point of Eqs. 
(2)-(5). The scattering field is determined by 
superimposing radiation field and incident field. The 
tangential bending moment tM  can be determined by 
applying the operator in Eq.(30) to Eq.(2) with 
respective to the field point. 

An incident flexural wave is represented by 
 

0 0( cos( ) sin( ))( )
0

ik x yiu e φ φ+  (38)

where ( )
0
iu is the amplitude of incident wave, k is the 

wave number and 0φ  is the incident angle. Under the 
polar coordinate, the bending moment and effective 
shear force induced by the incident wave can be 
determined by substituting Eq. (38) into Eqs.(9) and 
(10). By setting the amplitude of incident wave 

( )
0 1iu = , the amplitude of moment produced by the 

incident wave is 
2

0M Dk=  (39)

The dynamic moment concentration factor (DMCF) 
can be determined as 

0/tDMCF M M=  (40)

6 Numerical results and discussions 
Scattering problems of flexural wave in thin plate 

with multiple holes are solved and dynamic moment 
concentration factors are determined by using the 
present method. For the cases of small wave number, 
the same plate problem is independently conducted by 
using FEM (the ABAQUS software) for comparison. In 
all cases, the inner boundary is subject to the free 
boundary condition and the thickness of plate is 
0.002m. 
Case 1: An infinite plate with one hole [1,4,9] 

An infinite plate with one hole (radius a = 1m) 
subject to the incident flexural wave with 0 0φ =  and 
different wave number is considered as shown in Figure 
5. Figure 6 shows the DMCF on the circular boundary, 
at / 2π , versus the dimensionless wave number by 
using different number of terms of Fourier series. From 
the convergence analysis, the required number of 
Fourier series of the present method to approach the 
analytic solution increases as the wave number of 
incident wave becomes large. Results of the present 
method match well those of analytic method when the 
number of terms of Fourier series amounts to M = 10.  

In the limit of zero wave number [1] like k = 0.005, 
the incident excitation is similar to the application of 
static moment 0xxM M=  and 0yyM vM=  at the 
four sides of a plate. Accordingly, a 16m×16m plate 
with one hole subject to static bending moments, 

.xxM 1 0=  and .yyM 0 3=  at the four sides is 
considered. The FEM model with 25567 triangle 
elements is shown in Figure 7(a) and the result of the 
normalized tangential bending moment around the hole 
is shown in Figure 7(b). By using the present method,  
the unknown boundary densities of the plate are 
expressed in terms of Fourier series and the numerical 
result of DMCF around the hole using fewer bases of 
Fourier series terms (M = 10) is shown in Figure 
7(c).The analytical solution [1] is also shown in Figure 
7(d) and good agreements are made after comparing 
with three approaches, the present method, analytical 
solution and FEM. 

Figure 8 shows that the real and imaginary parts of 
DMCF on the circular boundary at / 2π  versus the 
dimensionless wave number for various Poisson ratios 
by using the present method and analytical solution [1]. 
It indicates that both results match well and DMCF 
depends on the Poisson ratio of the plate as well as the 
incident wave number. The real and imaginary parts of 
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DMCF along the circular boundary are shown in Figure 
9, which agree with the results reported in [10].  
Case 2: An infinite plate with two holes [6] 

An infinite plate with two holes (radius a = 1m) 
subject to the incident flexural wave with 0 0φ =  and 
different wave number is considered as shown in Figure 
10, where L is the central distance of two holes. For the 
case of L = 2.1m, Figure 11 shows the DMCF on the 
upper circular boundary, at / 2π− , versus the 
dimensionless wave number by using different number 
of terms of Fourier series. From the convergence 
analysis, the results using fewer terms of Fourier series 
show some peaks due to the close distance of two holes. 
Even so, the convergence is fast achieved when the 
number of Fourier series M reaches twenty.  

After comparing with the proposed method, we 
consider a 16m×22m plate with two holes (L = 2.1m) 
subject to static bending moments, .xxM 1 0=  and 

.yyM 0 3=  at the four sides. The FEM model with 
49024 triangle elements is shown in Figure 12(a) and 
the result of the normalized tangential bending moment 
around the hole is shown in Figure 12(b). The result of 
the present method for k = 0.005 is shown in Figure 
12(c) and good agreements are made after comparison. 

The distribution of the amplitude of DMCF on the 
circular boundary, solid line for one hole and dash line 
for the upper one of two holes, are shown in Figure 13. 
Figure 14 shows the DMCF at the upper circular edge 
( / 2π− ) versus the dimensionless central distance 
under different incident wave number, where the dot 
line denotes the result of one hole. It indicates that 
when the central distance between two holes gradually 
increases, the results for the case of two holes will 
approach that of one hole. The results show regular 
phenomenon and the period is /2 kπ  which can not 
be found in [6]. Finally, the ineffective distance Lin is 
defined as the central distance required for the dynamic 
moment concentration factor of two holes to decrease 
and stay within two percentage of that of one hole. 
Numerical result indicates that the ineffective distance 
initially increase and then decrease as wave number 
increase.  

7 Concluding remarks 
A semi-analytical approach to solve the scattering 

problem of flexural waves and to determine dynamic 
moment concentration factors in an infinite thin plate 

with multiple circular holes was proposed. The 
scattering problem can be treated by decomposing it 
into two parts: incident wave field and radiation field. 
The radiation field was determined by employing the 
null-field integral formulation in conjunction with 
degenerate kernels, tensor transformation and Fourier 
series. All the improper integrals in the null-field 
integral formulation were avoided by using the 
degenerate kernels and were easily calculated through 
the series sum. For the general exterior case, the rotated 
degenerate kernels have been derived in the adaptive 
observer system. Once the Fourier coefficients of 
boundary densities have been determined, the flexural 
wave scattering field and dynamic moment 
concentrations can be obtained by using the boundary 
integral equations for domain points in conjunction 
with general rotated degenerate kernels. For an infinite 
plate with one hole, good agreement between the 
results of the present method and those of analytical 
solution is observed. For the cases of small wave 
number, the present results for a plate with one or 
multiple circular holes are compared with the static 
case of finite element method (FEM) using ABAQUS. 
Convergence rate depends on two parameters of the 
incident wave number and the central distance between 
two holes. Test of convergence was done in our 
numerical results. The effect of the central distance on 
DMCF has been studied by using the present method. 
As can be seen from the numerical results, the present 
method provides a semi-analytic solution for the 
dynamic moment concentration factors in infinite thin 
plates with multiple circular holes subject to the 
incident flexural wave, since its analytical solution is 
not yet available. 
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Figure 1 Problem statement for an infinite plate with 
multiple circular holes subject to an incident 
flexural wave 

Figure 2 Collocation point and boundary contour integration 
in the boundary integral equation by using the 
adaptive observer system 
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Figure 3 Transformation of tensor components 

 

Figure 4 The decompositon of scattering problem 
into (a) incident wave field and (b) radition 
field 

 
Figure 5 An infinite plate with one hole subject to an 

incident flexural wave 

 
Figure 6 Dynamic moment concentration factor on 

the circular boundary ( / 2θ π= ) versus the 
dimensionless wave number by using 
different number of terms of Fourier series 

 

 
Figure 7 Distribution of dynamic moment 

concentration factors on the circular 
boundary by using different methods, the 
present method, analytical solution and FEM

 
Figure 8 The real and imaginary parts of DMCF on 

the circular boundary ( / 2θ π= ) versus the 
dimensionless wave number for various  
Poisson ratios 

 
 
 
 
 
 
 
 
 
 

Figure 9 Distribution of DMCF ( )0/TM M  on the 
circular boundary, solid line (real part) for t = 
0  for, dash line (imaginary part) for t = T/4 
(ka = 5.0) 
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Figure 10 An infinite plate with two holes subject to an 

incident flexural wave with an incident angle 
0φ  

 
Figure 11 DMCF on the upper circular boundary 

( / 2θ π= − ) versus the dimensionless wave 
number by using different number of terms of 
Fourier series ( L/a = 2.1) 

 
Figure 12 Distribution of DMCF on the upper circular 

boundary by using different methods, the 
present method and FEM ( L/a = 2.1) 

 
 
 
 

 
Figure 13. Distribution of DMCF ( )0/TM M  on 

the circular boundary, solid line for one hole 
and dash line for the upper one of two holes 
(L=2.1a, ka = 0.2) 

 
Figure 14. DMSF ( )0/M Mθ  on the circular 

boundary ( / 2θ π= − ) versus the 
dimensionless central distance of two holes 
for different wave number under the incident 
wave with 0 0φ =  

 
 
 
 
 
 


