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ABSTRACT

In this paper, we derive the null-field integral
equation for an infinite medium containing circular
inclusions with arbitrary radii and positions under
remote anti-plane shear. To fully capture the circular
geometries, separable expressions of fundamental
solutions in the polar coordinate and Fourier series
for boundary densities are adopted. By moving the
null-field point to the boundary, singular integrals
are transformed to series sums after introducing the
concept of degenerate kernels. Not only the
singularity but also the sense of principle values are
novelly avoided. For the calculation of boundary
stress, the Hadamard principal value for
hypersingularity is not required and can be easily
calculated by using series sums. The solution is
formulated in a manner of semi-analytical form
since error purely attributes to the truncation of
Fourier series. The exact solution for a single
inclusion is derived. The problem of two inclusions
and the problem of one cavity surrounded by two
inclusions are revisited to demonstrate the validity of
our method. The proposed formulation has been
generalized to multiple inclusions and cavities in a
straightforward way without any difficulty.

Keywords: anti-plane  deformation, null-field
integral equation, degenerate kernel, Fourier series,
circular inclusion, Laplace problem

1. INTRODUCTION

The problem of stress field around two circular
inclusions in an infinite medium under remote shear
has been studied by Honein et al. [1]. They have
introduced the Mobius transformations involving the
complex potential to analytically solve the problems.
Also the limiting cases of two circular cavities have
been examined. For more than two inclusions or
cavities, the derivation of an exact solution may
have difficulty. Based on the technique of analytical
continuity and the method of successive

approximation, Chao and Young [2] have
numerically studied the stress distribution on a hole
surrounded by two inclusions. To develop a
systematic approach for general inclusions or
cavities is not trivial. Mogilevskaya and Crouch [3]
have solved the problem of an infinite plane
containing arbitrary number of circular inclusions
based on the complex singular integral equation. In
their analysis procedure, the unknown tractions are
approximated by using the complex Fourier series.
The advantage of their method is that one can tackle
a lot of inclusions even inclusions touching one
another. However, for calculating an integral over a
circular boundary, they did not express the
fundamental solution in terms of degenerate kernels
using the polar coordinate. Degenerate kernels play
an important role not only for mathematical analysis
but also for numerical implementation. For example,
the spurious eigenvalue [4], fictitious frequency [5]
and degenerate scale [6] have been mathematically
studied by using degenerate kernels for problems
with circular boundaries. Chen et al. [7] employed
the degenerate kernel and Fourier series to fully
capture the geometric property of circular cavities.
Besides, they utilized the adaptive observer system
and vector decomposition technique to efficiently
solve the problem. Three cavities were tested
successfully. However, the inclusion was not
considered in their paper.

For the circular cavity or inclusion, we use the
degenerate kernels in the polar coordinate and
Fourier series to best fit the geometry. In this paper,
a semi-analytical approach is successfully developed
to carry out the solution of the problem under
antiplane shear. The mathematical formulation is
derived by using degenerate kernels for the
fundamental solution and Fourier series expansions
for the boundary densities in the null-field integral
equation. The continuity and equilibrium constraints
on the interface are considered in the multi-domain
formulation. By moving the null-field point to the
boundary, the singular integral can be easily
determined using series sums in our formulation due
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to the introduction of degenerate kernels. By
substituting the boundary condition, we obtain a
linear algebraic system after collocating points on
each circular boundary. The unknown coefficients in
the algebraic system can be determined. Then, the
field potential and stress can be obtained.
Furthermore, arbitrary number of circular inclusions
can be treated by using the present method without
any difficulty. Also, the boundary stress can be
easily determined by using series sums instead of
employing the sense of Hadamard principal value. A
general purpose program for arbitrary number of
inclusions with various radii and different positions
was developed. The infinite medium with multiple
circular holes [7] can be solved as a limiting case of
zero shear modulus of inclusions by using the
developed program. The exact solution for a single

inclusion is derived by using the present formulation.

The Honein’s problem of two inclusions is revisited
to demonstrate the validity of our method. Besides, a
hole surrounded by two inclusions solved by Chao
and Young [2] is tested to verify the generality for
problems including the cavities and inclusions.

2. PROBLEM STATEMENT

The displacement field of the antiplane
deformation is defined as:

u=v=0, w=w(xYy), (@h)
where w is the only nonvanishing component of

displacement with respect to the Cartesian
coordinate which is a function of x and y. Fora

linear elastic body, the stress components are

ow

O3 =03 = .ua ) 2
ow

O3 =03 = :ua_y ) (3)

where p is the shear modulus. The equilibrium
equation can be simplified to

0o, 0oy,
—24+—2-0.
OX oy “)
Thus, we have
o’'w  O'w  _,
—+—=V°w=0.
8)(2 8y2 (5)

Equation (5) indicates that this problem can be
modeled by the governing equation of Laplace
equation.

We consider an infinite medium subject to N
circular inclusions bounded by the B, contour
(k=1,2,---,N) as shown in Fig. 1. The matrix is
under remote shear o, =0, o, =7 atinfinity or
7y
i

equivalently under the displacement w> =

©®© O

© © 0 0

Fig. 1 Infinite antiplane problem with arbitrary
circular inclusions

By taking free body on the interface between the
matrix and inclusions, we can decompose the
problem into two systems as shown in Figs. 2 (a)
and 2 (b). In the numerical point of view, this is
so-call multi-domain approach. For the problem in
Fig. 2 (a), it can be superimposed by two parts as
shown in Figs. 2 (c¢) and 2 (d). Therefore, one
exterior problem for the matrix is shown in Fig. 2 (d)
and several interior problems for nonoverlapping
inclusions are shown in Fig. 2 (b). According to the
null-field integral formulation [7], both problems in
Figs. 2 (d) and 2 (b) can be solved in a unified
manner since they both satisfy the Laplace equation.

® ® @ @ @ @®

T Boo
®Q

® @6 ®© 0 o0 o0

Fig. 2 (a) Infinite
medium with holes
under uniform shear

Fig. 2 (b) Interior
Laplace problems

®@ 06 0 @ o6 ©0

Fig. 2 (c) Infinite
medium under uniform
shear

Fig. 2 (d) Exterior Laplace
problem

3. A UNIFIED FORMULATION FOR
EXTERIOR AND INTERIOR PROBLEMS
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3.1 Dual boundary integral equations and dual
null-field integral equations

The integral equation for the domain point can be
derived from the third Green’s identity [8], we have

27rW(X) = f T (5, )W(S)dB(S)

(6)
_fBU (s,X)t(s)dB(s), x € D,

- ow(x)
on,

2 - f M (s, X)W(s)dB(s)
B
()
- fB L(s,X)t(s)dB(s), x € D,
where s and x are the source and field points,
respectively, B is the boundary, D is the domain
of interest, n, and n, denote the outward normal

vector at the source point s and field point x,
respectively, and the kernel function U(s,xX)=Inr,

(r=|x—9|), is the fundamental solution which
satisfies

VU (s,X) = 276(X—S5) , ®)
in which 6(x—s) denotes the Dirac-delta function.
The other kernel functions, T(s,x), L(s,x) and
M (s, x) , are defined by

T =20ER (g0 = 060,
o x ©)
M (S, X) = 8U—(S'X) ,
onon,

By collocating x outside the domain (x € D), we
obtain the dual null-field integral equations as shown
below

O:fBT(s, X)w(s)dB(s)

(10)
—fBU (s, X)t(s)dB(s), x € D,

0= fBM (s, X)W(s)dB(s)

(11)
—fB L(s, x)t(s)dB(s), x € D°,

where D° is the complementary domain. Based on
the separable property, the kernel function U (s, x)

can be expanded into degenerate form by separating
the source points and field points in the polar
coordinate [9]:

U'(R,0;p,¢)=InR
Yy cosm(9—6), R>
U(s,x) = " (12
U(R.6;p,6)=Inp

~ 1 R, -
—;E(E) cosm(d —¢), p>R

where the superscripts “i” and “e” denote the
interior (R>p ) and exterior ( p>R ) cases,
respectively. The origin of the observer system for
the degenerate kernel is (0,0). After taking the
normal derivative with respect to Eq. (12), the
T(s,x) kernel can be derived as

T‘(R,G;p,cé):%

+ y ( pmmﬂ)cosm(equ), R>
2 " a3)

T*(R,0;p,¢) =

_i(R::)cosm(e—gzﬁ), p>R

T(s,X) =

and the higher-order kernel functions, L(s,x) and
M (s, X) , are shown below

L'(R.0;p,6) =
—:(p::)cosm(e—gzﬁ), R>p
LX) = Le(R;;p, ool (4)
p
+§(pRm—jl)cosm(9—¢), p>R

M'(R,6;p,¢) =

0 m-1
Z(”;’iﬂ )cosm(d—¢), R>p
M (s,X) = m=t )
©0 e ®,6:p,0) = (%)
00 mRm—l
2
Since the potential resulted from T(s,x) and

L(s,x) kernels are discontinuous cross the

Jcosm(0 —¢), p>R

boundary, the potentials for R — p* and R— p~
are different. This is the reason why R=p is not
included in expressional degenerate kernels of
T(s,x) and L(s,x) in Egs. (13) and (14). For
circular boundaries, we apply the Fourier series
expansions to approximate the potential w and its
normal derivative on the boundary

L
w(s, ) =ay + (ay cosnd, +bysinng,),
= (16)
s, €B,, k=12,---\N,

L
t(s,) = p§ + >_ (P cosné, +qp sinnd, ),
= (17)

s, €B,, k=12,---\N,

where t(s, ) =ow(s,)/on,, a*, b, pf and g

(n=0,1,2,.--) are the Fourier coefficients and 6,

is the polar angle. In real computation, only 2L +1
terms are considered.
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3.2 Adaptive observer system

After collocating points in the null-field integral
equation of Eq. (10), the boundary integrals through
all the circular contours are required. Since the
boundary integral equations (BIES) are frame
indifferent, objectivity due to rule, the observer
system is adaptively to locate the origin at the center
of circle in the boundary integrals. Adaptive
observer system is chosen to fully employ the
property of degenerate kernels. Figures 3 (a) and 3
(b) show the boundary integration for the circular
boundaries in the adaptive observer system. It is
worthy noted that the origin of the observer system
is located on the center of the corresponding circle
under integration to entirely utilize the geometry of
circular boundary for the expansion of degenerate
kernels and boundary densities. The dummy variable
in the circular integration is angle (#) instead of
radial coordinate (R).

X=(p,o)

Fig. 3 (b) BIE (domain point— B, )

3.3 Linear algebraic system

By moving the null-field point Xj to the jth

circular boundary in the limit sense for Eq. (10) in
Fig. 3 (a), we have

0= kZ;kaT(R,@;pj,<z>j)w(R,9)Ro|9k

‘ZN:fB U(R,0;p;,6,)t(R,0)Rd0,, (18)

|X(pj7¢j)€ D,
where N is the number of inner circular inclusion.
Note that the kernels U and T are assumed in
the degenerate form given by Egs. (12) and (13),
respectively while the boundary densities w and
t are expressed in terms of the Fourier series
expansion forms given by Egs. (16) and (17),
respectively. Then, the integrals multiplied by
separate expansion coefficients in Eqg. (10) are
non-singular and the limit of the null-field point to
the boundary is easily implemented by using
appropriate form of degenerate kernels. Thus, the
collocation point x(p;,¢;) in the discretized Eqg.

(10) can be considered on the boundary Bj . too. In

contrast to the standard discretized boundary integral
equation formulation with nodal unknowns of the
physical boundary densities w and t, now the
degrees of freedom are given by coefficients
employed in the Fourier expansions of these
densities. It is found that the compatible relationship
of the boundary unknowns is equivalent by moving
either the null-field point or the domain point to the
boundary in different directions as shown in Figs. 3
(@ and 3 (b). In the B, integration, we set the
origin of the observer system to collocate at the
center c, to fully utilize the degenerate kernels and
Fourier series. By collocating the null-field point on
the boundary, a linear algebraic system is obtained:
For an exterior problem, we have

Ve e[ -ws) a9
For an interior problem, we have

U [{'}=[T"]{w'}, (20)

where the superscripts “M ” and “1 ” denote the
matrix and inclusion, respectively. [UM], [TM],

[U'] and [T'] are the influence matrices with a
dimension of (N +1)(2L+1) by (N+1)(2L+1),
fwp, e} {wets {e) {w'} and {1}
denote the column vectors of Fourier coefficients
with a dimension of (N +1)(2L+1) by 1 in which

those can be defined as follows:
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[UI]: U.llo U1|1 U]I.N ’
Uy Uy Un
To To Tow
[TI ] — Tllo T1|1 TllN ,
To Tu T
wg ty
wy' t)
{wh b= twi (=1
wy ty
W' to
w;* te
{w b =twy p { =1t (22)
Wy N
W, t,
W, 4
(wi={wif ft)={e
w! t'
N N

where the vectors {w™}, {t"}, {w~}, {t*},
{w'} and {t'} are the Fourier coefficients and
the first subscript “ j” (j=0,1,2,--,N ) in [U%],
[Ti]. [U] and [T} denotes the index of the
jth circle where the collocation point is located

and the second subscript “k” (k=0,1,2,---,N)
denotes the index of the kth circle where boundary

data {w" —w>}, {t" -}, {w'} or {t'}
are specified, N is the number of circular

inclusions in the domain and L indicates the
truncated terms of Fourier series.

Two special cases may be solved in a unified
manner using the null-field integral formulation:
(1) One bounded problem of circular domain in Fig.
2 (b) becomes the interior problems.
(2) The other is unbounded, i.e., the outer boundary
B, in Fig. 3 (a) is B_. It is the exterior

problem.

The direction of contour integration should be
taken care, i.e., counterclockwise and clockwise
directions are for the interior and exterior problems,
respectively. According to the continuity of
displacement and equilibrium of traction along the
kth interface, we have the two constraints

{w"}={w'} on B, (23)

W)=l on Bl @

where [W,| and [p,]| can be defined as follows:

gy O - 0
0 0
l=l; 70
0 0 -y
(25)
m 0 - 0
0 p - 0
wd=
0 0 - g

where u, and g, denote the shear modulus of the

matrix and the kth inclusion. By assembling the
matrices in Egs. (19), (20), (23) and (24), we have

™ UM 0 offlwM b
0o o T UY[tM|_|o 26
I 0 -1 of|lw ol (26)

0 4 O |t |O

where {b} and [I] are the forcing terms due to

the remote stress 7~ and the identity matrix,
respectively. After obtaining the unknown Fourier
coefficients in Eq. (26), the origin of observer
system is setto ¢, inthe B, integration as shown

in Fig. 3 (b) to obtain the field potential by
employing Eq. (6).

3.4 Vector decomposition technique for the
potential gradient in hypersingular equation

In order to determine the boundary stress, the
tangential derivative should be taken care. Besides,
Eg. (7) shows the normal derivative of potential for
domain points. For the nonconcentric cases, special
treatment for the potential gradient should be taken
care as the source point and field point locate on
different circular boundaries. As shown in Fig. 4, the
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normal direction on the boundary (1, 1) should be
superimposed by the radial derivative (3, 3") and
angular derivative (4, 4’). We called this treatment
“vector decomposition technique”. According to the
concept of vector decomposition technique, Eqgs. (14)
and (15) can be modified to

L(R.6:p.0) =
i(” ;
*Z )COS(**G%) R>p
L(s. )= L*(R.0: p.0) = & (27)
+i: (pRTil) cosm(f — ¢) cos(¢ — &)
> R" | . . ™
7Z(W)sm m(é’fg’))COS(EfCJrf), p>R
M'(R.6; /1 ¢)=
Z( R’“” )Cosm(9 p)cos(¢ —£)
S sinm - )05+, Rz
M@Ex)=1{ o © o (28)

M®(R,0;p,0) =

Z(K) cosm(#— ¢ cos(C — €)

—i:( s )smm(b‘ q/))COS(f—C-Ff) p>R

me

where ¢ and & are shown in Fig. 4. For the

special case, the circles with respect to the same
origin of observer, the potential gradient is derived
free of special treatment since (=¢.

Fig. 4 Vector decomposition

3.5 Stress distribution along the interface

After obtaining all the unknown boundary data
w and t for the matrix and inclusions, the
boundary stresses in the polar coordinate can be
determined by

0,, = 04,C088+0,,sIn0, (29)
0,4, =—045IiN0+0,,C086 , (30)

where o, and o,, are the normal and tangential

stresses. The boundary integral equation for the
domain point (including the boundary point) is
employed to find the stress by employing
appropriate form of degenerate kernels.

4. ILLUSTRATIVE EXAMPLES

First, we derive an analytical solution for a single
inclusion. Then, we revisited the two-inclusions
problem solved by Honein et. al. [1] and the
problem of one hole and two inclusions by Chao and
Young [2] by using the present method to show the
validity of our formulation. All the numerical results
are given below by using the twenty terms of Fourier
series (L =20).

Case 1: Single inclusion

By using the present formulation, we derived the
exact solution of single inclusion perfectly bonded
by an infinite medium under uniform shear. The
exact solution of the stresses along the circular
boundary yields

oM =2, sing, (31)
Ho + 1y
M Ho
oy, =27 ————C0S0 , 32
” Ho + iy (32)
ol —2r—H__sing, (33)
Ho + 1y
I Jad!
oy, =27 cosé . 34
” Ho + 1y (34)

It is noted that o) coincides with o as required

by the traction equilibrium. It is found that stress
concentration factor is reduced due to inclusion in
comparison with that of cavity (wx, =0) as shown

in Eq. (32).

Case 2: Two circular inclusions lie onthe y axis

The infinite medium with two elastic inclusions is
under uniform shear.

Stresses around inclusion of radius a,

2 3 0
@ (in radians)

Fig. 5 (a) Honein’sdata  Fig. 5 (b) Present result

The first inclusion centered at the origin of radius
a, with the shear modulus 4, =24,/3 and the

other inclusion of radius a, =2a, centered on vy
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axis at a +a,+d (d=0.1a) with the shear
modulus p, =13u,/7 are shown in Fig. 5 (a). In

order to be compared with the Honein’s data
obtained by using the Mdbius transformation [1], the
stresses along the boundary of radius a is shown

in Fig. 5 (b). Good agreement is obtained. It satisfies
the equilibrium traction along the circular boundary.

Case 3: A circular hole surrounded by two circular
inclusions

Figure 6 (a) shows the geometry of one cavity and
two inclusions. A circular hole centered at the origin
of radius a is surrounded by two circular

inclusions (d/a, =1) with equal radius a, =2a,,
a, =2a, and equal shear modulus p, =p,. We

solved the distribution of the tangential stress along
the circular hole influenced by the surrounding
inclusions to compare with the Chao and Young’s
data [2]. The stress distribution along the circular
hole affected by the two surrounding inclusions is
shown in Figs. 6 (b)-6 (€), when they are arrayed in
parallel or perpendicular to the direction of uniform
shear. It is noted that the uniform shear at infinity is
oyq =7 and o, =0. Good agreement is also

made.

® ©
® ©
® ©
® ©
T
® ©
® ©

Fig. 6 (a) A circular hole surrounded by two circular
inclusions under uniform shear

5. CONCLUSIONS

A semi-analytical formulation for multiple circular
inclusions with arbitrary radii and locations using
degenerate kernels and Fourier series in an adaptive
observer system was developed. The singularity and
hypersingularity were avoided after introducing the
concept of degenerate kernels. The exact solution for
single inclusion was solved by using the present
formulation. Two examples investigated by Honein
et al. and by Chao and Young were revisited,
respectively. Good agreements were made after
comparing with the previous results. Regardless of
the number of inclusions, the proposed method can
offer good results. Moreover, our method presented
here can be applied to Laplace problems with
circular boundaries.
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