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ABSTRACT 

In this paper, we derive the null-field integral 
equation for an infinite medium containing circular 
inclusions with arbitrary radii and positions under 
remote anti-plane shear. To fully capture the circular 
geometries, separable expressions of fundamental 
solutions in the polar coordinate and Fourier series 
for boundary densities are adopted. By moving the 
null-field point to the boundary, singular integrals 
are transformed to series sums after introducing the 
concept of degenerate kernels. Not only the 
singularity but also the sense of principle values are 
novelly avoided. For the calculation of boundary 
stress, the Hadamard principal value for 
hypersingularity is not required and can be easily 
calculated by using series sums. The solution is 
formulated in a manner of semi-analytical form 
since error purely attributes to the truncation of 
Fourier series. The exact solution for a single 
inclusion is derived. The problem of two inclusions 
and the problem of one cavity surrounded by two 
inclusions are revisited to demonstrate the validity of 
our method. The proposed formulation has been 
generalized to multiple inclusions and cavities in a 
straightforward way without any difficulty. 

Keywords: anti-plane deformation, null-field 
integral equation, degenerate kernel, Fourier series, 
circular inclusion, Laplace problem 

1. INTRODUCTION 

The problem of stress field around two circular 
inclusions in an infinite medium under remote shear 
has been studied by Honein et al. [1]. They have 
introduced the Möbius transformations involving the 
complex potential to analytically solve the problems. 
Also the limiting cases of two circular cavities have 
been examined. For more than two inclusions or 
cavities, the derivation of an exact solution may 
have difficulty. Based on the technique of analytical 
continuity and the method of successive 

approximation, Chao and Young [2] have 
numerically studied the stress distribution on a hole 
surrounded by two inclusions. To develop a 
systematic approach for general inclusions or 
cavities is not trivial. Mogilevskaya and Crouch [3] 
have solved the problem of an infinite plane 
containing arbitrary number of circular inclusions 
based on the complex singular integral equation. In 
their analysis procedure, the unknown tractions are 
approximated by using the complex Fourier series. 
The advantage of their method is that one can tackle 
a lot of inclusions even inclusions touching one 
another. However, for calculating an integral over a 
circular boundary, they did not express the 
fundamental solution in terms of degenerate kernels 
using the polar coordinate. Degenerate kernels play 
an important role not only for mathematical analysis 
but also for numerical implementation. For example, 
the spurious eigenvalue [4], fictitious frequency [5] 
and degenerate scale [6] have been mathematically 
studied by using degenerate kernels for problems 
with circular boundaries. Chen et al. [7] employed 
the degenerate kernel and Fourier series to fully 
capture the geometric property of circular cavities. 
Besides, they utilized the adaptive observer system 
and vector decomposition technique to efficiently 
solve the problem. Three cavities were tested 
successfully. However, the inclusion was not 
considered in their paper. 

For the circular cavity or inclusion, we use the 
degenerate kernels in the polar coordinate and 
Fourier series to best fit the geometry. In this paper, 
a semi-analytical approach is successfully developed 
to carry out the solution of the problem under 
antiplane shear. The mathematical formulation is 
derived by using degenerate kernels for the 
fundamental solution and Fourier series expansions 
for the boundary densities in the null-field integral 
equation. The continuity and equilibrium constraints 
on the interface are considered in the multi-domain 
formulation. By moving the null-field point to the 
boundary, the singular integral can be easily 
determined using series sums in our formulation due 
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to the introduction of degenerate kernels. By 
substituting the boundary condition, we obtain a 
linear algebraic system after collocating points on 
each circular boundary. The unknown coefficients in 
the algebraic system can be determined. Then, the 
field potential and stress can be obtained. 
Furthermore, arbitrary number of circular inclusions 
can be treated by using the present method without 
any difficulty. Also, the boundary stress can be 
easily determined by using series sums instead of 
employing the sense of Hadamard principal value. A 
general purpose program for arbitrary number of 
inclusions with various radii and different positions 
was developed. The infinite medium with multiple 
circular holes [7] can be solved as a limiting case of 
zero shear modulus of inclusions by using the 
developed program. The exact solution for a single 
inclusion is derived by using the present formulation. 
The Honein’s problem of two inclusions is revisited 
to demonstrate the validity of our method. Besides, a 
hole surrounded by two inclusions solved by Chao 
and Young [2] is tested to verify the generality for 
problems including the cavities and inclusions. 

2. PROBLEM STATEMENT 

  The displacement field of the antiplane 
deformation is defined as: 

0u v= = , ( , )w w x y= , (1) 
where w  is the only nonvanishing component of 
displacement with respect to the Cartesian 
coordinate which is a function of x  and y . For a 
linear elastic body, the stress components are 

13 31
w
x

σ σ µ ∂= =
∂

, (2) 

23 32
w
y

σ σ µ ∂= =
∂

, (3) 

where µ  is the shear modulus. The equilibrium 
equation can be simplified to 

31 32 0
x y
σ σ∂ ∂
+ =

∂ ∂
. (4) 

Thus, we have 
2 2

2
2 2 0w w w

x y
∂ ∂+ =∇ =
∂ ∂

. (5)

Equation (5) indicates that this problem can be 
modeled by the governing equation of Laplace 
equation. 

We consider an infinite medium subject to N  
circular inclusions bounded by the kB  contour 
( 1, 2, ,k N= ) as shown in Fig. 1. The matrix is 
under remote shear 31 0σ∞ = , 32σ τ∞ =  at infinity or 

equivalently under the displacement yw τ
µ

∞ = . 

 
Fig. 1 Infinite antiplane problem with arbitrary 

circular inclusions 
 
By taking free body on the interface between the 
matrix and inclusions, we can decompose the 
problem into two systems as shown in Figs. 2 (a) 
and 2 (b). In the numerical point of view, this is 
so-call multi-domain approach. For the problem in 
Fig. 2 (a), it can be superimposed by two parts as 
shown in Figs. 2 (c) and 2 (d). Therefore, one 
exterior problem for the matrix is shown in Fig. 2 (d) 
and several interior problems for nonoverlapping 
inclusions are shown in Fig. 2 (b). According to the 
null-field integral formulation [7], both problems in 
Figs. 2 (d) and 2 (b) can be solved in a unified 
manner since they both satisfy the Laplace equation. 

Fig. 2 (a) Infinite 
medium with holes 
under uniform shear 

Fig. 2 (b)  Interior 
Laplace problems 

 

Fig. 2 (c) Infinite 
medium under uniform 

shear 

Fig. 2 (d) Exterior Laplace 
problem 

 
 

3. A UNIFIED FORMULATION FOR 
EXTERIOR AND INTERIOR PROBLEMS 
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3.1 Dual boundary integral equations and dual 
null-field integral equations 

The integral equation for the domain point can be 
derived from the third Green’s identity [8], we have 

2 (x) (s, x) (s) (s)

(s, x) (s) (s), x ,
B

B

w T w dB

U t dB D

π =

− ∈

∫
∫

 (6)

x

(x)2 (s, x) (s) (s)

(s, x) (s) (s), x ,

B

B

w M w dB

L t dB D

π ∂ =
∂

− ∈

∫

∫
n  (7)

where s  and x  are the source and field points, 
respectively, B  is the boundary, D  is the domain 
of interest, sn  and xn  denote the outward normal 
vector at the source point s  and field point x , 
respectively, and the kernel function (s, x) lnU r= , 
( x sr ≡ − ), is the fundamental solution which 
satisfies 

2 (s, x) 2 (x s)U πδ∇ = − , (8)
in which (x s)δ −  denotes the Dirac-delta function. 
The other kernel functions, (s, x)T , (s, x)L  and 

(s, x)M , are defined by 

s

(s, x)(s, x) UT ∂≡
∂n

, 
x

(s, x)(s, x) UL ∂≡
∂n

, 

2

s x

(s, x)(s, x) UM ∂≡
∂ ∂n n

, 

(9)

By collocating x  outside the domain ( x cD∈ ), we 
obtain the dual null-field integral equations as shown 
below 

0 (s, x) (s) (s)

(s, x) (s) (s), x ,
B

c

B

T w dB
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=

− ∈

∫
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 (10)
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(s, x) (s) (s), x ,
B

c

B

M w dB

L t dB D

=

− ∈

∫
∫

 (11)

where cD  is the complementary domain. Based on 
the separable property, the kernel function (s, x)U  
can be expanded into degenerate form by separating 
the source points and field points in the polar 
coordinate [9]: 

1

1

( , ; , ) ln
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where the superscripts “ i ” and “ e ” denote the 
interior ( R ρ> ) and exterior ( Rρ> ) cases, 
respectively. The origin of the observer system for 
the degenerate kernel is ( 0,0 ). After taking the 
normal derivative with respect to Eq. (12), the 

(s, x)T  kernel can be derived as 

1
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and the higher-order kernel functions, (s, x)L  and 
(s, x)M , are shown below 
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Since the potential resulted from (s, x)T  and 
(s, x)L  kernels are discontinuous cross the 

boundary, the potentials for R ρ+→  and R ρ−→  
are different. This is the reason why R ρ=  is not 
included in expressional degenerate kernels of 

(s, x)T  and (s, x)L  in Eqs. (13) and (14). For 
circular boundaries, we apply the Fourier series 
expansions to approximate the potential w  and its 
normal derivative on the boundary 

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

w a a n b nθ θ
=

= + +∑ , 

sk kB∈ , 1, 2, ,k N= , 

(16)

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

t p p n q nθ θ
=

= + +∑ , 

sk kB∈ , 1, 2, ,k N= , 

(17)

where s(s ) (s ) /k kt w= ∂ ∂n , k
na , k

nb , k
np  and k

nq  
( 0, 1, 2,n = ) are the Fourier coefficients and kθ  
is the polar angle. In real computation, only 2 1L+  
terms are considered. 
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3.2 Adaptive observer system 

After collocating points in the null-field integral 
equation of Eq. (10), the boundary integrals through 
all the circular contours are required. Since the 
boundary integral equations (BIEs) are frame 
indifferent, objectivity due to rule, the observer 
system is adaptively to locate the origin at the center 
of circle in the boundary integrals. Adaptive 
observer system is chosen to fully employ the 
property of degenerate kernels. Figures 3 (a) and 3 
(b) show the boundary integration for the circular 
boundaries in the adaptive observer system. It is 
worthy noted that the origin of the observer system 
is located on the center of the corresponding circle 
under integration to entirely utilize the geometry of 
circular boundary for the expansion of degenerate 
kernels and boundary densities. The dummy variable 
in the circular integration is angle ( θ ) instead of 
radial coordinate ( R ). 
 

 
Fig. 3 (a) BIE (null-field point kB→ ) 

 
Fig. 3 (b) BIE (domain point kB→ ) 

3.3 Linear algebraic system 

By moving the null-field point x j  to the jth  
circular boundary in the limit sense for Eq. (10) in 
Fig. 3 (a), we have 

0
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=

=

=

−

∈

∑∫
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where N  is the number of inner circular inclusion.  
Note that the kernels U  and T  are assumed in 
the degenerate form given by Eqs. (12) and (13), 
respectively while the boundary densities w  and 
t  are expressed in terms of the Fourier series 
expansion forms given by Eqs. (16) and (17), 
respectively. Then, the integrals multiplied by 
separate expansion coefficients in Eq. (10) are 
non-singular and the limit of the null-field point to 
the boundary is easily implemented by using 
appropriate form of degenerate kernels. Thus, the 
collocation point x( , )j jρ φ  in the discretized Eq. 
(10) can be considered on the boundary jB , too. In 
contrast to the standard discretized boundary integral 
equation formulation with nodal unknowns of the 
physical boundary densities w  and t , now the 
degrees of freedom are given by coefficients 
employed in the Fourier expansions of these 
densities. It is found that the compatible relationship 
of the boundary unknowns is equivalent by moving 
either the null-field point or the domain point to the 
boundary in different directions as shown in Figs. 3 
(a) and 3 (b). In the kB  integration, we set the 
origin of the observer system to collocate at the 
center kc  to fully utilize the degenerate kernels and 
Fourier series. By collocating the null-field point on 
the boundary, a linear algebraic system is obtained: 
For an exterior problem, we have 

{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t t T w w , (19)

For an interior problem, we have 

{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t T w , (20)

where the superscripts “ M ” and “ I ” denote the 
matrix and inclusion, respectively. M⎡ ⎤⎢ ⎥⎣ ⎦U , M⎡ ⎤⎢ ⎥⎣ ⎦T , 

I⎡ ⎤⎢ ⎥⎣ ⎦U  and I⎡ ⎤⎢ ⎥⎣ ⎦T  are the influence matrices with a 

dimension of ( 1)(2 1)N L+ +  by ( 1)(2 1)N L+ + , 

{ }Mw , { }Mt , { }∞w , { }∞t , { }Iw  and { }It  
denote the column vectors of Fourier coefficients 
with a dimension of ( 1)(2 1)N L+ +  by 1 in which 
those can be defined as follows: 
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where the vectors { }Mw , { }Mt , { }∞w , { }∞t , 

{ }Iw  and { }It  are the Fourier coefficients and 

the first subscript “ j ” ( 0, 1, 2, ,j N= ) in M
jk

⎡ ⎤⎢ ⎥⎣ ⎦U , 
M
jk

⎡ ⎤⎢ ⎥⎣ ⎦T , I
jk

⎡ ⎤⎢ ⎥⎣ ⎦U  and I
jk

⎡ ⎤⎢ ⎥⎣ ⎦T  denotes the index of the 

jth  circle where the collocation point is located 
and the second subscript “ k ” ( 0, 1, 2, ,k N= ) 
denotes the index of the kth  circle where boundary 
data { }M ∞−w w , { }M ∞−t t , { }Iw  or { }It  
are specified, N  is the number of circular 
inclusions in the domain and L  indicates the 
truncated terms of Fourier series. 

  Two special cases may be solved in a unified 
manner using the null-field integral formulation: 
(1) One bounded problem of circular domain in Fig. 

2 (b) becomes the interior problems. 
(2) The other is unbounded, i.e., the outer boundary 

0B  in Fig. 3 (a) is B∞ . It is the exterior 
problem. 

The direction of contour integration should be 
taken care, i.e., counterclockwise and clockwise 
directions are for the interior and exterior problems, 
respectively. According to the continuity of 
displacement and equilibrium of traction along the 
kth  interface, we have the two constraints 

{ } { }M I=w w  on kB , (23)

  [ ]{ } [ ]{ }M I=−0 kµ t µ t  on kB , (24)

where [ ]0µ  and [ ]kµ  can be defined as follows: 
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0

0

0 0
0 0

,

0 0
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,

0 0

k

k

k

µ
µ

µ
µ
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µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

0

k

µ

µ

 (25)

where 0µ  and kµ  denote the shear modulus of the 
matrix and the kth  inclusion. By assembling the 
matrices in Eqs. (19), (20), (23) and (24), we have 

⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎣ ⎦

M M M

I I M

I

I
0 k

bT U 0 0 w
00 0 T U t

=
0I 0 -I 0 w
00 µ 0 µ t

, (26)

where { }b  and [ ]I  are the forcing terms due to 
the remote stress τ  and the identity matrix, 
respectively. After obtaining the unknown Fourier 
coefficients in Eq. (26), the origin of observer 
system is set to kc  in the kB  integration as shown 
in Fig. 3 (b) to obtain the field potential by 
employing Eq. (6). 

3.4 Vector decomposition technique for the 
potential gradient in hypersingular equation 

In order to determine the boundary stress, the 
tangential derivative should be taken care. Besides, 
Eq. (7) shows the normal derivative of potential for 
domain points. For the nonconcentric cases, special 
treatment for the potential gradient should be taken 
care as the source point and field point locate on 
different circular boundaries. As shown in Fig. 4, the 
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normal direction on the boundary (1, 1’) should be 
superimposed by the radial derivative (3, 3’) and 
angular derivative (4, 4’). We called this treatment 
“vector decomposition technique”. According to the 
concept of vector decomposition technique, Eqs. (14) 
and (15) can be modified to 
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(28)

where ζ  and ξ  are shown in Fig. 4. For the 
special case, the circles with respect to the same 
origin of observer, the potential gradient is derived 
free of special treatment since ζ ξ= . 

Fig. 4 Vector decomposition 

3.5 Stress distribution along the interface 

After obtaining all the unknown boundary data 
w  and t  for the matrix and inclusions, the 
boundary stresses in the polar coordinate can be 
determined by 

31 32cos sinrzσ σ θ σ θ= + , (29)

31 32sin coszθσ σ θ σ θ=− + , (30)
where rzσ  and zθσ  are the normal and tangential 
stresses. The boundary integral equation for the 
domain point (including the boundary point) is 
employed to find the stress by employing 
appropriate form of degenerate kernels. 

4. ILLUSTRATIVE EXAMPLES 

  First, we derive an analytical solution for a single 
inclusion. Then, we revisited the two-inclusions 
problem solved by Honein et. al. [1] and the 
problem of one hole and two inclusions by Chao and 
Young [2] by using the present method to show the 
validity of our formulation. All the numerical results 
are given below by using the twenty terms of Fourier 
series ( 20L= ). 
 
Case 1: Single inclusion 
  By using the present formulation, we derived the 
exact solution of single inclusion perfectly bonded 
by an infinite medium under uniform shear. The 
exact solution of the stresses along the circular 
boundary yields 

1

0 1
2 sinM

rz
µσ τ θ

µ µ
=

+
, (31)

0

0 1
2 cosM

zθ
µσ τ θ
µ µ

=
+

, (32)

1

0 1
2 sinI

rz
µσ τ θ

µ µ
=

+
, (33)

1

0 1
2 cosI

zθ
µσ τ θ

µ µ
=

+
. (34)

It is noted that M
rzσ  coincides with I

rzσ  as required 
by the traction equilibrium. It is found that stress 
concentration factor is reduced due to inclusion in 
comparison with that of cavity 1( 0)µ =  as shown 
in Eq. (32). 
 
Case 2: Two circular inclusions lie on the y  axis 

The infinite medium with two elastic inclusions is 
under uniform shear. 

Fig. 5 (a) Honein’s data Fig. 5 (b) Present result 
 
The first inclusion centered at the origin of radius 

1a  with the shear modulus 1 02 / 3µ µ=  and the 
other inclusion of radius 2 12a a=  centered on y  
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axis at 1 2a a d+ +  1( 0.1 )d a=  with the shear 
modulus 2 013 / 7µ µ=  are shown in Fig. 5 (a). In 
order to be compared with the Honein’s data 
obtained by using the Möbius transformation [1], the 
stresses along the boundary of radius 1a  is shown 
in Fig. 5 (b). Good agreement is obtained. It satisfies 
the equilibrium traction along the circular boundary. 
 
Case 3: A circular hole surrounded by two circular 
inclusions 
  Figure 6 (a) shows the geometry of one cavity and 
two inclusions. A circular hole centered at the origin 
of radius 1a  is surrounded by two circular 
inclusions 1( / 1)d a =  with equal radius 2 12a a= , 

3 12a a=  and equal shear modulus 2 3µ µ= . We 
solved the distribution of the tangential stress along 
the circular hole influenced by the surrounding 
inclusions to compare with the Chao and Young’s 
data [2]. The stress distribution along the circular 
hole affected by the two surrounding inclusions is 
shown in Figs. 6 (b)-6 (e), when they are arrayed in 
parallel or perpendicular to the direction of uniform 
shear. It is noted that the uniform shear at infinity is 

31σ τ∞ =  and 32 0σ∞ = . Good agreement is also 
made. 

 
Fig. 6 (a) A circular hole surrounded by two circular 

inclusions under uniform shear 

5. CONCLUSIONS 

A semi-analytical formulation for multiple circular 
inclusions with arbitrary radii and locations using 
degenerate kernels and Fourier series in an adaptive 
observer system was developed. The singularity and 
hypersingularity were avoided after introducing the 
concept of degenerate kernels. The exact solution for 
single inclusion was solved by using the present 
formulation. Two examples investigated by Honein 
et al. and by Chao and Young were revisited, 
respectively. Good agreements were made after 
comparing with the previous results. Regardless of 
the number of inclusions, the proposed method can 
offer good results. Moreover, our method presented 
here can be applied to Laplace problems with 
circular boundaries. 

 
Fig. 6 (b) zθσ  versus θ ( 0β = ) [2] 

 

Fig. 6 (c) zθσ  versus θ ( 0β = ) [present result] 

 
Fig. 6 (d) zθσ  versus θ ( 90β = ) [2] 

 

Fig. 6 (e) zθσ  versus θ ( 90β = ) [present result] 

x

d  

3a  

2a  

d  

τ

y  

1a  
β  

3µ  

2µ  

 

0 60 120 180 240 300 360
q (degree)

-3

-2

-1

0

1

2

3

t q
z/t

m1/m0=m2/m0=0
m1/m0=m2/m0=0.1
m1/m0=m2/m0=1
m1/m0=m2/m0=10
m1/m0=m2/m0=¶

0 60 120 180 240 300 360
q (degree)

-4

-2

0

2

4

t q
z/t

m1/m0=m2/m0=0
m1/m0=m2/m0=0.1
m1/m0=m2/m0=1
m1/m0=m2/m0=10
m1/m0=m2/m0=¶



中華民國力學學會第廿九屆全國力學會議   新竹市 國立清華大學 動力機械工程學系   94 年 12月 16-17日 
The 29th National Conference on Theoretical and Applied Mechanics, December 16-17, 2005, NTHU, Hsinchu, Taiwan, R.O.C. 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 E043-8 

REFERENCES 

1. E. Honein, T. Honein and G. Herrmann, “On two 
circular inclusions in harmonic problems,” 
Quarterly of Applied Mathematics, Vol. 50, pp. 
479-499 (1992). 

2. C. K. Chao and C. W. Young, “On the general 
treatment of multiple inclusions in antiplane 
elastostatics,” Int. J. Solids Structures, Vol. 35, 
pp. 3573-3593 (1998). 

3. S. G. Mogilevskaya and S. L. Crouch, “A 
Galerkin boundary integral method for multiple 
circular elastic inclusions,” International 
Journal for Numerical Methods in Engineering, 
Vol. 52, pp. 1069-1106 (2001). 

4. J. T. Chen, S. R. Kuo and K. H. Chen, “A 
nonsingular integral formulation for the 
Helmholtz eigenproblems of a circular domain,” 
J. Chinese Institute of Engineers, Vol. 22, No. 6, 
pp. 729-739 (1999). 

5. J. T. Chen and S. R. Kuo, “On fictitious 
frequencies using circulants for radiation 
problems of a cylinder,” Mechanics Research 
Communications, Vol. 27, No. 1, pp. 49-58 
(2000). 

6. J. T. Chen, S. R. Kuo and J. H. Lin, “Analytical 
study and numerical experiments for degenerate 
scale problems in the boundary element method 
for two-dimensional elasticity,” Int. J. Numer. 
Meth. Engng., Vol. 54, No. 12, pp. 1669-1681 
(2002). 

7. J. T. Chen, W. C. Shen and A. C. Wu, 
“Null-field integral equations for stress field 
around circular holes under antiplane shear,” 
Engineering Analysis with Boundary Elements, 
Accepted (2005). 

8. J. T. Chen and H-K Hong, “Review of dual 
boundary element methods with emphasis on 
hypersingular integrals and divergent series,” 
ASME Applied Mechanics Reviews, Vol. 52, pp. 
17-33 (1999). 

9. J. T. Chen and Y. P. Chiu, “On the 
pseudo-differential operators in the dual 
boundary integral equations using degenerate 
kernels and circulants,” Engineering Analysis 
with Boundary Elements, Vol. 26, pp. 41-53 
(2002). 

10. W. C. Shen, “Null-field approach for Laplace 
problems with circular boundaries using 
degenerate kernels,” Master Thesis, Department 
of Harbor and River Engineering, National 
Taiwan Ocean University, Keelung, Taiwan 
(2005). 

 
 
 
 
 
 
 
 

零場積分方程求解含圓形置入物受

反平面剪力之應力場 

吳安傑 沈文成 陳正宗 

國立台灣海洋大學 河海工程學系 
 
摘要 

    本文係使用零場積分方程式求解基

材含任意大小、位置之圓形置入物或孔

洞，受反平面剪力作用下之應力場。將

基本解以極座標展開成退化核(分離核)
的形式，而以傅立葉級數來完整描述邊

界物理量。藉由引入退化核的觀念，將

零場點推向邊界時，奇異積分會被轉換

成級數和的形式。因此無需面對奇異積

分，且在計算邊界應力時，不需處理

Hadamard主值問題，而可輕易地由級數

和的形式求得。由於誤差僅來自於擷取

有限項的傅立葉級數，故本方法可視為

“半解析法＂。由於本方法可輕易導得

單一置入物的解析解，因此我們分別求

解含兩個圓形置入物與兩個圓形置入物

圍繞單一圓洞的問題來突顯本方法的一

般性。最後，我們提出一套系統性的方

法來求解含多圓洞與置入物的反平面問

題。 

關鍵字：反平面、零場積分方程式、退

化核(分離核)、傅立葉級數、圓形置入

物、拉普拉斯方程式 


