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Abstract In this paper, the method of fundamental solutions (MFS) for solving the eigen-

frequencies of multiply connected plates is proposed. The coefficients of influ-

ence matrices are easily determined when the fundamental solution is known.

True and spurious eigensolutions appear at the same time. It is found that

the spurious eigensolution using the MFS depends on the location of the in-

ner boundary where the fictitious sources are distributed. To verify this find-

ing, mathematical analysis for the appearance of spurious eigenequations us-

ing degenerate kernels and circulants is done by demonstrating an annular plate

with a discrete model. In order to obtain the true eigensolution, the Burton &

Miller method is utilized to filter out the spurious eigensolutions. One example

is demonstrated analytically and numerically to see the validity of the present

method.
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1. INTRODUCTION

The method of fundamental solutions (MFS) is a numerical approach as well
as finite difference method (FDM), finite element method (FEM) and boundary
element method (BEM). This method was attributed to Kupradze in 1964 [1].
The MFS was applied to many problems (Refs.[2–4]), and can be regarded as
one kind of meshless method. It has several advantages over boundary element
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method, e.g., no boundary integrals, no singularity and mesh-free model. Al-
though MFS has been applied to solve many engineering problems, most of
them are for cases of simply connected domains. Chen et al. have tried to
solve the eigenproblem of multiply connected membrane and found that spu-
rious eigenvalues also appear (Ref. [5]) as well as BEM (Ref. [6]). We may
wonder whether spurious solutions also occur for the plate case rather than
membrane.

In this paper, the MFS for solving the eigenfrequencies of annular plate is
proposed. The occurring mechanism of the spurious eigensolution of an annular
plate is studied analytically. The degenerate kernels and circulants are employed
to determine the spurious eigensolution. In order to filter out the spurious
eigenvalues, singular value decomposition updating technique and Burton &
Miller method are utilized. An annular case is demonstrated analytically to see
the validity of the present method.

2. ANALYTICAL DERIVATION OF FREE
VIBRATION FOR ANNULAR PLATE USING THE
METHOD OF FUNDAMENTAL SOLUTIONS

The governing equation for an annular plate vibration in Figure 1 is the
biharmonic equation as follows:

∇4u(x) = λ4u(x), x ∈ �

where ∇4 is the biharmonic operator, u is the lateral displacement, λ4 =
ω2ρ0h/D, λ is the frequency parameter, ω is the angular frequency, ρ0 is the
surface density, D is the flexural rigidity expressed as D = Eh3/12(1 − ν2) in
terms of Young’s modulus E , the Poisson ratio ν and the plate thickness h, �

Figure 1. An annular problem.
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Figure 2. Figure sketch for source distribution.

is the domain of the thin plate. The fundamental solution is chosen as

U (s, x) = 1

8λ2

[
Y0(λr ) − i J0(λr ) + 2

π
(K0(λr ) − i I0(λr ))

]
(2)

where r ≡ |s − x |, i2 = −1, J0(λr ) and Y0(λr ) are the first kind and second
kind zeroth-order Bessel functions, respectively, I0(λr ) and K0(λr ) are the first
and second kind zeroth-order modified Bessel functions, respectively. Based
on the MFS, we can represent the displacement field of plate vibration by

u(xi ) =
2N∑
j=1

P(s j , xi )φ j +
2N∑
j=1

Q(s j , xi )ϕ j , (3)

where 2N is the number of fictitious source nodes. φ j and ϕ j are the known
densities with respect to P and Q. The two kernels (P and Q) are obtained from
either the two of the kernel U (s, x) and the other three kernels, 
(s, x), M(s, x)
and V (s, x) (Ref. [7]). The slope (θ ), normal moment (m) and effective shear
force (v), are also obtained as reference (Ref. [7]). In order to derive the exact
eigensolution, degenerate kernel and circulant are considered for an annular
plate. The field and source points are distributed as shown in Figure 2. Here,
we consider the clamped case (u = 0 and θ = 0) by using U and 
 kernels.
We distributed 2N field points on the real boundary, and the same 2N sources
are distributed on the fictitious boundary. By matching the boundary condition,
we obtain
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where {φ1}, {φ2}, {ϕ1} and {ϕ2} are the generalized coefficients for B1 and
B2 with a dimension of 2N × 1, the matrices [Uij], [
ij], [Uijθ ] and [
ijθ ]
mean the influence matrices of U , 
, Uθ and 
θ kernels which are obtained
by collocating the field and source points on Bi and B ′

j with a dimension of
2N × 2N , respectively. For the existence of nontrivial solution, the determinant
of the matrix vs. the eigenvlaue must be zero, i.e.,

det[SMcc] =
N∏

m=−(N−1)

det([T cc
m ][SU


m ]) = 0, (5)

where

[T cc
m ] =

⎡
⎢⎢⎢⎢⎢⎣

Jm(λa) Ym(λa) Im(λa) Km(λa)
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J ′
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J ′
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⎤
⎥⎥⎥⎥⎥⎦

(6)

and

[SU

m ] =⎡

⎢⎢⎢⎢⎣

−i Jm (λa′) Ym (λb′) − i Jm (λb′) −i J ′
m (λa′) Y ′
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2
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π
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π
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⎤
⎥⎥⎥⎥⎦.

(7)

It is noted that the matrix [T cc
m ] denotes the matrix of true eigenequation for the

C-C case and the matrix [SU

m ] denotes the matrix of spurious eignequation

in the U -
 formulation after comparing with the analytical solution for the
annular plate (Ref. [8]). The matrix in Equation (7) can be further decomposed
into

det[SU

m ] =

∣∣∣∣∣
Jm(λa′) J ′

m(λa′)

Im(λa′) I ′
m(λa′)

∣∣∣∣∣

×
∣∣∣∣∣

Ym(λb′) − i Jm(λb′) Y ′
m(λb′) − i J ′

m(λb′)

Km(λb′) − i(−1)m Im(λb′) K ′
m(λb′) − i(−1)m I ′

m(λb′)

∣∣∣∣∣ = 0

(8)

Since the latter part of Equation (8) is never zero, the spurious eigenequation
depends on a′. It is noted that the spurious eigensolution happens to be true
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Figure 3. The determinant vs. frequency parameter by using the U -
 formulation.

eigensolution of the clamped circular plate with a radius a′. Therefore, the
positions of spurious eigenvalues for the annular problem depend on the location
of inner fictitious boundary a′ where the sources are distributed.

3. A NUMERICAL EXAMPLE

An annular plate with the inner radius of 0.5 meter and the outer radius
of 1 meter are considered, respectively. The source points are distributed at
a′ = 0.4 meter and b′ = 1.2 meter. Forty-six nodes are uniformly distributed
on the inner and outer fictitious boundaries. Figure 3 shows the determinant
vs. frequency parameter by using the U -
 formulation. The drop location
indicates the possible eigenvalues. Figure 4 shows the determinant vs. frequency
parameter by using the Burton & Miller method for the annular plate. It is found
that the appearance of spurious eigenvalues is suppressed. After comparing the
result with the analytical solution, good agreement is made.

4. CONCLUSIONS

The mathematical analysis has shown that spurious eigenvalues occur by
using degenerate kernels and circulants when the method of fundamental so-
lutions is used to solve the eigenvalue of annular plates. The positions of
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Figure 4. The determinant vs. frequency parameter by using the U -
 formulation in conjunction

with Burton & Miller method.

spurious eigenvalues for the annular problem depend on the location of in-
ner fictitious boundary where the sources are distributed. The spurious eigen-
values in the annular problem are found to be the true eigenvalues of the as-
sociated simply connected problem bounded by the inner sources. We have
employed the Burton & Miller method to filter out the spurious eigenvalues
successfully.
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