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含圓形邊界史托克流問題之半解析法
Semi-analytical approach for solving Stokes flow problems with circular boundaries
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摘要

本文將考慮含圓形邊界的穩態、平面的史托克流問題，其中流體為不可壓縮且具黏滯性。邊界積分方程中的未知密度函數以傅立葉級數做展開，其中的退化核係將基本解中依場、源點分離所導得的級數形式，藉由退化核的內外域表示式可避免主值積分的計算。在邊界上均勻佈點，並配合邊界條件可得一線性代數方程式，其未知的傅立葉係數即可輕易求得，將之代回邊界積分方程中可得場解。本法可視為一半解析法。本法有四大好處:(1)良態模式,(2)無須主值計算,(3)無邊界層效應, (4)指數收斂。最後，將舉幾個例子來驗證此法的可行性。
關鍵字：雙諧和方程、邊界積分方程、零場積分方程、退化核、傅立葉級數、史托克流
Abstract

Steady, plane Stokes flow of an incompressible viscous fluid is considered within a circular boundary. To fully capture the circular boundary, the boundary densities in the boundary integral equation (BIE) are expanded in terms of Fourier series. The kernel functions in the BIE are expanded to degenerate kernels by using the separation of field and source points. Therefore, the approach can be considered as a semi-analytical method. Novelly, the improper integrals are transformed to series sum and are easily calculated. The linear algebraic system can be established by matching the boundary conditions at the collocation points. Then, the unknown Fourier coefficients can be easily determined. Four gains are achieved, (1) well-posed mode, (2) free of principal value, (3). Illimination of boundary layer effect, (4). Exponential convergence. Finally, several examples including circular and eccentric domains are presented to demonstrate the validity of the present method.
Keyword: biharmonic equation, boundary integral equation, null-field integral equation, degenerate kernel, Fourier series, Stokes flow
1. Introduction

Boundary element methods (BEM) by discretizing the boundary integral equation (BIE) have been extensively applied for engineering problems recently comparable to domain type methods, e.g. finite element methods (FEM) or finite difference methods (FDM). However, improper integrals on the boundary should be handled particularly when a BEM is utilized. Therefore, many researchers proposed several regularization techniques to deal with the associated singularity and hypersingularity. In stead, accounting for the fact that the potential is discontinuous across the boundary, this paper aims to employ the degenerate kernel by describing explicitly the kernel function in an analytical form on each side across the boundary (interior and exterior). Accordingly, all the improper integrals are transformed to series sum and are easily calculated. Therefore, degenerate kernel, namely separable kernel, is a vital tool adopted novelly in the paper to study the Stokes problems with circular boundaries.

As it is well known that Stokes flow problems are equivalent to plate problems with the corresponding stream function and displacement, respectively, satisfying biharmonic equations. Therefore, the formulation and related experience of plate problems can be benefit to studies of Stokes flow problems. Kelmanson [4, 6] applied the boundary integral equation to solve the problems of two-dimensional steady slow flow for the lubrication technology. Note that, however, kernel functions in Kelmanson’s paper are fundamental solutions instead of degenerate kernels. Moreover, linear boundary element scheme is used for the boundary density.
The kernel functions in the present formulation are expanded to degenerate kernels in an analytical series representation by separating the source point and field point and the boundary densities are expressed in terms of Fourier series. Bird and Steele [1] presented a Fourier series procedure to solve circular plate problems containing multiple circular holes. Therefore, the paper features with the boundary integral equation in conjunction with degenerate kernel and Fourier series proposed novelly to solve the Stokes problems with circular boundaries.

The purpose of this paper is to study semi-analytically biharmonic problems with circular boundaries by using the BIE in conjunction with degenerate kernels, Fourier series, vector decomposition and the adaptive observer frame. The technique of vector decomposition is adopted especially to deal with the problem for the non-concentric case. Finally, eccentric examples are presented to show the validity of the present method and some conclusions are made.

2. Formulation of the Stokes flow problems

  The governing equation of Stokes flow is derived from the Navier-Stokes equation as follows:
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 is the density of fluid, 
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 is time, 
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 is gravity, 
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 is pressure and 
[image: image8.wmf]m

 is the viscosity. Therefore, the first term of Eq.(1) means inertia force, the second term denotes body force, the third term is pressure gradient and the final term is viscous force. The term of inertia force can be neglected since the low Reynolds number flow is considered (inertia force << viscous force) and the body force is also neglected to reduce Eq.(1) as follows:
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The continuity equation for the incompressible two-dimensional flow is expressed as shown below
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and the velocity components, 
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, can be related to the stream function 
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The biharmonic equation can be derived by associating Eqs.(2)-(5) as shown below
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3. Boundary integral equation for the domain point
Here, we use plate formulation to solve Stokes problems since they both satisfy the biharmonic equation. The boundary integral equations for the domain point can be derived from the Rayleigh-Green identity as follows [2]:
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where 
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 is the boundary of the domain 
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 in Eqs.(6)-(9) are expanded to degenerate kernels by using the separation of source and field points [2]. The kernel function 
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where 
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 is the Dirac-Delta function. Therefore, the fundamental solution can be obtained:
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where 
[image: image48.wmf]r

 is the distance between source point 
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 and field point 
[image: image50.wmf]x

. The relationship among 
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where 
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 are the slope, moment and shear force operators with respect to the point 
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By using the formulations in conjunction with the degenerate kernels, Fourier series and adaptive observer system, the stream function can be solved.

4. Null-field integral equation
The null-field integral equations were obtained by collocating the field point 
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 outside the domain as follows:
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where 
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 is the complementary domain of 
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. Since the four equations of Eqs.(15)-(18) are given, there are 6 (
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) options for choosing any two equations to solve the problems. For simplicity, the Eqs.(15) and (16) are used. In the real implementation, the collocation point in the null-field integral equation is moved to the boundary from 
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 such that the kernel functions can be expressed in terms of appropriate forms of degenerate kernels. Novelly, all the improper integrals disappear and are transformed to series sum in the BIEs since the potential across the boundary can be described explicitly in both sides by using degenerate kernels.

5. Expansion of Fourier series and kernels
The boundary densities 
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 are expressed in terms of Fourier series as follows:

	
[image: image79.wmf]0

1

()(cossin)

M

nn

n

usppnqn

qq

=

=++

å


	(19)

	
[image: image80.wmf]0

1

()(cossin)

M

nn

n

sggnhn

qqq

=

=++

å


	(20)

	
[image: image81.wmf]0

1

()(cossin)

M

nn

n

msccndn

qq

=

=++

å


	(21)

	
[image: image82.wmf]0

1

()(cossin)

M

nn

n

usaanbn

qq

=

=++

å


	(22)


where 
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By employing the separation technique for source and field points, the kernel function 
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 can be expanded in terms of degenerate kernel in a series form [2] as shown below:
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where the superscripts “
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” denote the interior and exterior cases of 
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6. Adaptive observer system and vector decomposition for the normal derivative

6.1 Adaptive observer system

Consider a biharmonic problem with circular boundaries as shown in Figure 2. Since the boundary integral equations are frame indifferent, i.e. rule of objectivity is obeyed. Adaptive observer system is chosen to fully employ the circular property by expanding the kernels into degenerate forms. The origin of the observer system can be adaptively located on the center of the corresponding boundary contour under integration. The dummy variable in the circular contour integration is the angle 
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. By using the adaptive system, all the boundary integrals can be determined analytically free of principal value senses.

6.2 Vector decomposition

Since the higher-order singular equation is also one alternative to deal with the Stokes problem, potential gradient or higher-order gradients is required to calculate carefully. For the non-concentric case, special treatment for the potential gradient should be taken care as the source and field points locate on different boundaries. As shown in Figure 3, the true normal direction with respect to the collocation point 
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The tangential derivative 
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7. Solution procedures of the semi-analytical approaches

Eccentric case (doubly-connected domain)

By using the null-field integral equations Eqs.(15)-(16), the linear algebraic system can be constructed as follows:
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For brevity, a unified form 
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Becomes
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where 
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in which 
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Eq.(32) indicates that the constraint is composed of double boundary integrals. The linear algebraic system Eq.(28) is reformulated to 
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where 
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8. Numerical examples

The inner cylinder is rotating with a constant angular velocity and the outer one is stationary as shown in Figure 4. The following parameters are defined: 
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 for the anticlockwise angular velocity of inner cylinder. The essential boundary conditions are specified as follows:
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The unknown boundary densities 
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 are expressed in terms of Fourier series. The unknown Fourier coefficients can be determined by using the null-field integral equations in conjunction with degenerate kernels and Fourier series; however, the boundary condition 
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 is an unknown constant along the inner boundary. An additional constraint is required to ensure a unique solution. From the solution procedures of the present method, 
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 with different eccentricities are calculated and the results are shown in Table 1. By using the fewer degrees of freedom than BIE [4, 6], present results are more accurate after comparing with the analytical solution as follows:
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where 
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The contour plot of stream function can be obtained by substituting Fourier coefficients into the boundary integral equation for the domain point of Eq.(6). The contour plots of streamlines for 
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 solved by employing the present method are compared with the Kelmanson’s results [4, 6] obtained by using the 160 boundary nodes and Kamal’s result [5] as shown in Figure 5. It indicates that the proposed approach shows higher convergence rate.
8. Concluding remarks

In this paper, the formulation in conjunction with the degenerate kernels and Fourier series expansion in adaptive observer system was proposed to solve the Stokes flow problems. The stream function along the inner rotating cylinder is obtained by using BIEM. Only fewer numbers of collocation points were used to show the good agreement after comparing with the BIE results on the base of analytical solution. Although the Poisson ratio is contained in the BIEM, this method can be applied to solve the Stokes problems no matter how the Poisson ratio is specified.
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