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a b s t r a c t

The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by
using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of
circular holes is determined. Based on the addition theorem, the solution of the field represented by mul-
tiple coordinate systems centered at each circle can be transformed into one coordinate system centered
at one circle, where the boundary conditions are given. In this way, a coupled infinite system of simulta-
neous linear algebraic equations is derived as an analytical model for the scattering of flexural wave by
multiple holes in an infinite plate subject to the incident flexural wave. The formulation is general and is
easily applicable to dealing with the problem containing multiple circular holes. Although the number of
hole is not limited in our proposed method, the numerical results of an infinite plate with three circular
holes are presented in the truncated finite system. The effects of both incident wave number and the cen-
tral distance among circular holes on the DMCF are investigated. Numerical results show that the DMCF
of three holes is larger than that of one, when the space among holes is small and meanwhile the spec-
ified direction of incident wave is subjected to the plate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Thin plates with multiple circular holes are widely used in engi-
neering structures, e.g. missiles, aircraft, etc. Geometric discontinu-
ities due to these holes result in the stress concentration, which
significantly reduce the load carrying capacity. The deformation
and corresponding stresses induced by dynamic loading are prop-
agated throughout the structure by means of wave. At the irregular
interface of different media, flexural wave scattered in all direc-
tions recursively interacts with the incident wave. It turns out that
the scattering of the associated stress wave results in dynamic
stress concentrations which are larger than static ones at certain
wave frequencies (Pao and Mow, 1972).

Nishimura and Jimbo (1955) were two pioneers for the analyt-
ical study of the dynamic stress concentration and they deter-
mined the stresses in the vicinity of a spherical inclusion in the
elastic solid under a harmonic force. Pao (1962) studied the scat-
tering of flexural waves and dynamic stress concentrations around
a circular hole, and proposed an analytical solution. Since then,
most research work has focused on the scattering of elastic wave
ll rights reserved.

: +886 2 24632375.
ee), jtchen@mail.ntou.edu.tw
and the resulted dynamic stress concentration and has led to a ra-
pid development of analytical or numerical approach such as the
method of wave function expansion, the complex variable method,
the boundary integral equation method and the boundary element
method (Pao and Mow, 1972).

Kung (1964) studied dynamic stress concentrations resulting
from the scattering of flexural waves on the thin plate with one cir-
cular hole and gave the calculations of moment and shear forces as
a function of frequency. Liu et al. (1982) extended the complex var-
iable function approach for statics to the case of dynamic loading.
The dynamic stress concentration factors were given for circular
and elliptical cavities in an infinite plane by incident plane com-
pressional waves. By using the flux conservation relation and opti-
cal theorem, Norris and Vemula (1995) considered the scattering of
flexural waves by circular inclusions with different plate properties
and obtained numerical results. The complex variable function ap-
proach and conformal mapping technique were employed to solve
the diffraction problem of flexural waves by two cutouts (Hu et al.,
1998) and dynamic concentration factors of plates with two circu-
lar holes were presented under various boundary conditions.
Squire and Dixon (2000) applied the wave function expansion
method to study the scattering properties of a single coated cylin-
drical anomaly located in a thin plate on which flexural waves
propagate. Gao et al. (2001) dealt with theoretical and numeri-
cal analysis of scattering of elastic wave and dynamic stress
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Fig. 1. Problem statement for an infinite plate with multiple circular holes subject
to an incident flexural wave.
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concentrations in an infinite plate with a circular hole using the
boundary element method. Hayir and Bakirtas (2004) applied the
image method to analyze the scattering and dynamic stress
concentrations of elastic waves in plates with a circular hole sub-
ject to plane harmonic SH wave. Gao et al. (2005) studied the scat-
tering of flexural waves and calculated the dynamic stress
concentration in the thin plate with the cutout by using the dual
reciprocity boundary element method. Hu et al. (2007) employed
the wave function expansion and the expanded mode coefficients
to represent the flexural wave scattered by a circular hole in a
semi-infinite thin plate subject to the incident wave. According
to the boundary conditions, these coefficients are recessively
determined, which will become complicated and unmanageable
as the number of holes increases. Consequently in their recent pa-
per involving two circular holes (Fang et al., 2008), the total scat-
tering coefficients (or simple coefficients) are used instead of the
expanded mode coefficients. However, the proposed formulation
is applicable to the case of two holes and is not general. Recently
Lee and Chen (2008) proposed a semi-analytical approach to solve
the flexural wave scattered by multiple holes in an infinite plate by
using the null field integral equation method. In addition to the
need of integration, this collocation method (Lee and Chen, 2008)
belongs to point-matching approach instead of analytical deriva-
tion. It also increases the effort of computation since boundary
nodes for collocation are required.

The Trefftz method was first presented by Trefftz (1926). On the
boundary alone, this method was proposed to construct the solu-
tion space using trial complete functions which satisfy the given
differential equation (Kamiya and Kita, 1995). Apparently, Trefftz
method is categorized as the boundary-type solution such as the
boundary element method (BEM) or boundary integral equation
method (BIEM) which can reduce the dimension of the original
problem by one and thus the number of the unknowns is much less
than that of the domain type methods such as finite difference
method (FDM) or finite element method (FEM). Moreover, the
Trefftz formulation is regular and free of calculating improper
boundary integrals. However, almost all the problems solved by
using the Trefftz method are limited in the simply-connected
domain. An extension to problems with multiple holes, i.e. multi-
ply-connected domain, is our concern in this paper.

The concept of multipole method to solve multiply-connected
domain problems was firstly devised by Za_vis̆ka (1913) and used
for the interaction of waves with arrays of circular cylinders by Lin-
ton and Evans (1990). Recently, one monograph by Martin (2006)
used these and other methods to solve problems of the multiple
scattering in acoustics, electromagnetism, seismology and hydro-
dynamics. However, the BiHelmholtz problem with the fourth or-
der differential equation was not mentioned therein.

This paper proposed the multipole Trefftz method to solve
flexural waves scattered by multiple circular holes in an analytical
way. When considering an infinite thin plate with multiple circu-
lar holes, the transverse displacement field is expressed as an infi-
nite sum of multipoles at the center of each circular hole. Based
on the addition theorem, it is transformed into the same coordi-
nate centered at the center of one circle, where the boundary con-
ditions are given. By matching the known boundary conditions, a
coupled infinite system of simultaneous linear algebraic equations
is obtained and then the scattered field can be determined
according to the given incident flexural wave. Once the total field
is calculated as the sum of the incident field and the scattered
field, the dynamic moment concentration factor along the circular
holes can be determined. Some numerical results of an infinite
thin plate with three circular holes subject the incident flexural
wave are presented. The effects of both the space among holes
and the incident wave number on the DMCF are examined in this
paper.
2. Problem statement of scattering of flexural wave

An infinite thin plate with H nonoverlapping circular holes sub-
jected to the incident flexural wave is shown in Fig. 1, where H+1
observer coordinate systems are used: ðx1; x2Þ is a global plane
Cartesian coordinate centered at O; ðqp; /pÞ are H local plane polar
coordinates centered at Op; p ¼ 1; . . . ;H. The radius of the pth circu-
lar hole is denoted by Rp and Bp is its corresponding boundary. The
governing equation of motion for the transverse displacement
Wðx; tÞ in a thin plate is

q0h
@2Wðx; tÞ

@t2 ¼ �Dr4Wðx; tÞ þ Q ; x 2 Xe; ð1Þ

where x is the field point, Xe is the unbounded exterior region occu-
pied by the infinite plate, r4 is the biharmonic operator, q0 is the
volume density, h is the plate thickness, D ¼ Eh3

=12ð1� l2Þ is the
flexural rigidity of the plate, E denotes the Young’s modulus, l is
the Poisson’s ratio and Q is the external transverse load per unit
area.

For Q = 0 and time-harmonic motion exclusively, solution of Eq.
(1) is given by

Wðx; tÞ ¼ wðxÞe�ixt; ð2Þ

where x is the radian frequency. Hence the complex-valued func-
tion wðxÞ satisfies the BiHelmholtz equation,

r4wðxÞ � k4wðxÞ ¼ 0; ð3Þ

where k4 ¼ x2q0h=D and k is the wave number.
The solution of Eq. (3) in the plane polar coordinates can be rep-

resented as

wðq;/Þ ¼ w1ðq;/Þ þw2ðq;/Þ; ð4Þ

where w1ðq;/Þ and w2ðq;/Þ are solutions of the following equa-
tions, respectively,

r2w1ðq;/Þ þ k2w1ðq;/Þ ¼ 0; ð5Þ

r2w2ðq;/Þ � k2w2ðq;/Þ ¼ 0: ð6Þ

Eqs. (5) and (6) are the so-called Helmholtz equation and the
modified Helmholtz equation, respectively. From solutions of
Eqs. (5) and (6), the solution of Eq. (3) is explicitly expressed in
series form as follows:
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wðq;/Þ ¼
X1

m¼�1
~wmðqÞeim/; ð7Þ

where ~wmðqÞ is defined by

~wmðqÞ ¼ c1
mJmðkqÞ þ c2

mYmðkqÞ þ c3
mImðkqÞ þ c4

mKmðkqÞ; ð8Þ

in which ci
m ði ¼ 1—4Þ are the coefficients, Jm and Ym are the mth or-

der Bessel functions; and Im and Km are the mth order modified Bes-
sel functions. Based on the characteristics of functions at q ¼ 0
function and q!1, the appropriate Bessel function and the mod-
ified Bessel are chosen to represent the transverse displacement
field for the plate.

The w1 in Eq. (5) represents the part of the flexural wave that
travel in the plate and w2 represents the part attenuating (Pao
and Mow, 1972). When harmonic forces are applied perpendicu-
larly to a thin plate, both parts of the flexural wave are excited. If
the scatterer, such as a hole, is located at a great distance from
the load, the displacement w2 can be negligible due to attenuation
and only the displacement w1 need to be concerned as the incident
flexural wave. Consequently, an incident flexural wave with an
incident angle a with respect to the x1 axis is represented by

W ðiÞðx; tÞ ¼ w1ðxÞe�ixt ¼ w0ei½ðx1 cos aþx2 sin aÞk�xt�; ð9Þ

where w0 is the amplitude of incident wave. By substituting
x1 ¼ xp

1 þ qp cosð/pÞ and x2 ¼ xp
2 þ qp sinð/pÞ into Eq. (9) and omit-

ting the time factor e�ixt , the incident flexural wave in the pth cir-
cular hole is given by

wðiÞðqp;/pÞ ¼ w0cpeikqp cosð/p�aÞ; p ¼ 1; . . . ;H; ð10Þ

where cp ¼ eikðxp
1 cos aþxp

2 sinaÞ is a phase factor associated with the pth
circular hole (Linton and Evans, 1990). From the Jacobi’s expansion
(Watson, 1995), eix cos / ¼

P1
m¼�1imJmðxÞeim/, Eq. (10) can be ex-

panded in a series form

wðiÞðqp;/pÞ ¼
X1

m¼�1
aðiÞm ðkqpÞeim/p ; p ¼ 1; . . . ;H; ð11Þ

where aðiÞm ðkqpÞ ¼ cpimJmðkqpÞe�ima.
Based on the displacement field, the normal bending moment,

tangential bending moment and effective shear force can be de-
rived by applying the following three operators with respect to
the field point,

mnðq;/Þ ¼ �D lr2wðq;/Þ þ ð1� lÞ @
2wðq;/Þ
@q2

" #
; ð12Þ

mtðq;/Þ ¼ �D r2wðq;/Þ þ ðl� 1Þ @
2wðq;/Þ
@q2

" #
; ð13Þ

vðq;/Þ¼�D
@

@q
ðr2wðq;/ÞÞþð1�lÞ 1

q

� �
@

@/
@

@q
1
q
@wðq;/Þ

@/

� �� �� �
:

ð14Þ
3. Analytical derivations for flexural wave scattered by multiple
circular holes in a thin plate

Assume that a time harmonic incident flexural wave impinges
on an infinite thin plate containing H circular holes as shown in
Fig. 1. The problem of flexural wave scattered by H circular holes
is to solve Eq. (3) subject to the free traction along each circular
edge and a radiation condition at infinity, i.e. the scattered field
equaling to zero when q!1. Based on Eq. (7), we can express
the scattered field as an infinite sum of multipoles at the center
of each hole as follows:
wðscÞðx; q1; /1; . . . ; qH; /HÞ

¼
XH

k¼1

X1
m¼�1

ak
mHð1Þm ðkqkÞeim/k þ bk

mKmðkqkÞeim/k

" #
; ð15Þ

where ðq1;/1Þ; . . . ; ðqH;uHÞ are the polar coordinates of the field
point x with respect to each center of holes. The Hankel function
(J + iY) and the modified Bessel function K are chosen to represent
the infinite plate due to their values being finite as q!1. The coef-
ficients of ak

m and bk
m; k ¼ 1; . . . ;H; m ¼ 0;�1;�2; . . . ; are determined

by matching the boundary condition on each circle. To satisfy the
specified boundary conditions, the total field is required and de-
fined by

wðxÞ ¼ wðiÞðxÞ þwðscÞðxÞ: ð16Þ

By combining Eqs. (11) and (15), the total field is explicitly rep-
resented by

wðx; q1; /1; . . . ; qH; /HÞ

¼
X1

m¼�1
aðiÞm ðkqpÞeim/p þ

XH

k¼1

X1
m¼�1

ak
mHð1Þm ðkqkÞeim/k

"

þ bk
mKmðkqkÞeim/k

#
; p ¼ 1; . . . ;H: ð17Þ

In the following, we are mainly concerned with the free traction
condition for each circular edge. The bending moment and shear
force along each hole, p=1,. . ., H, can be obtained by substituting
Eq. (17) into Eqs. (12) and (14). The unknown coefficients of ak

m

and bk
m can be determined through the following boundary

conditions.

mnðqp;/pÞ ¼ 0; qp ¼ Rp; 0 6 /p 6 2p; p ¼ 1; . . . ;H; ð18Þ
vðqp;/pÞ ¼ 0; qp ¼ Rp; 0 6 /p 6 2p; p ¼ 1; . . . ;H: ð19Þ

But it is difficult to determine the unknown coefficients by
using the procedure mentioned above. This question can be an-
swered by applying the addition theorem (Watson, 1995) which
will be described in the following.

Based on the Graf’s addition theorem for the Bessel functions,
we can express the theorem in the following form,

JmðkqkÞeim/k ¼
X1

n¼�1
Jm�nðkrkpÞeiðm�nÞhkp JnðkqpÞein/p ; ð20Þ
ImðkqkÞeim/k ¼
X1

n¼�1
Im�nðkrkpÞeiðm�nÞhkp InðkqpÞein/p ; ð21Þ
Hð1Þm ðkqkÞeim/k ¼

P1
n¼�1

Hð1Þm�nðkrkpÞeiðm�nÞhkp JnðkqpÞein/p ; qp < rkp;

P1
n¼�1

Jm�nðkrkpÞeiðm�nÞhkp Hð1Þn ðkqpÞein/p ; qp > rkp;

8>><
>>:

ð22Þ
KmðkqkÞeim/k ¼

P1
n¼�1

ð�1ÞnKm�nðkrkpÞeiðm�nÞhkp InðkqpÞein/p ; qp < rkp;

P1
n¼�1

ð�1Þm�nIm�nðkrkpÞeiðm�nÞhkp KnðkqpÞein/p ; qp > rkp;

8>><
>>:

ð23Þ

where ðqp;upÞ and ðqk;ukÞ as shown in Fig. 1 are the polar coordi-
nates of the field point x with respect to Op and Ok, respectively,
which are the origins of two polar coordinate systems and
ðrkp; hkpÞ are the polar coordinates of Op with respect to Ok.
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By substituting the addition theorem for the Bessel functions
Hð1Þm ðkqkÞ and KmðkqkÞ into Eq. (17), the displacement field near
the circular boundary Bp for the case of qp < rkp is given by

wðx;qp;/pÞ ¼
X1

m¼�1
aðiÞm ðkqpÞeim/p

þ
X1

m¼�1
ap

mHð1Þm ðkqpÞ þ
X1

m¼�1
bp

mKmðkqpÞ
" #

eim/p

þ
XH

k¼1
k – p

X1
m¼�1

ak
m

X1
n¼�1

Hð1Þm�nðkrkpÞeiðm�nÞhkp JnðkqpÞ
"

þ bk
m

X1
n¼�1

ð�1ÞnKm�nðkrkpÞeiðm�nÞhkp InðkqpÞ
#

ein/p :

ð24Þ

Furthermore, Eq. (24) can be rewritten as
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wðx; qp;/pÞ ¼
X1

m¼�1
eim/p

�
aðiÞm ðkqpÞ þ Hð1Þm ðkqpÞap

m þ KmðkqpÞb
p
m

þ
XH

k¼1
k – p

X1
n¼�1

Ak
mnðkqpÞak

n þ Bk
mnðkqpÞb

k
n

" #�
; ð25Þ

where
Ak
mnðkqpÞ ¼ Hð1Þn�mðkrkpÞeiðn�mÞhkp JmðkqpÞ; ð26Þ

Bk
mnðkqpÞ ¼ ð�1Þmeiðn�mÞhkp Kn�mðkrkpÞImðkqpÞ: ð27Þ
By substituting Eq. (25) into Eq. (12), the normal bending mo-
ment, mnðxÞ, near the circular boundary Bpðp ¼ 1; . . . ;HÞ is given by
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mnðx; qp; /pÞ ¼
X1

m¼�1
eim/p

�
cðiÞm ðkqpÞ þ aH

mðkqpÞap
m þ aK

mðkqpÞb
p
m

þ
XH

k¼1
k – p

X1
n¼�1

Ck
mnðkqpÞak

n þ Dk
mnðkqpÞb

k
n

" #�
; ð28Þ

where
Ck
mnðkqpÞ ¼ Hð1Þn�mðkrkpÞeiðn�mÞhkpaJ

mðkqpÞ; ð29Þ

Dk
mnðkqpÞ ¼ ð�1Þmeiðn�mÞhkp Kn�mðkrkpÞaI

mðkqpÞ; ð30Þ
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cðiÞm ðkqpÞ ¼ cpimaJ
mðkqpÞe�ima: ð31Þ

The moment operator aX
mðkqÞ from Eq. (12) is defined as
aX
mðkqÞ ¼ D ð1� lÞX

0
mðkqÞ
q

� ð1� lÞm
2

q2 � k2
� �

XmðkqÞ
� �

; ð32Þ
where the upper (lower) signs refer to X = J, Y, H, (I, K), respectively.
The second order differential equations for these functions have
been used to simplify aX

mðkqÞ.
Similarly, the effective shear operator bX

mðkqÞ derived from Eq.
(14) can be expressed as,
1.5 2 2.5 3
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bX
mðkqÞ ¼ D m2ð1� lÞ � ðkqÞ2

h iX 0mðkqÞ
q2 �m2ð1� lÞXmðkqÞ

q3

� �
;

ð33Þ

and the field of effective shear, v(x), near the circular boundary
Bpðp ¼ 1; . . . ;HÞ is given by

vðx; qp; /pÞ ¼
X1

m¼�1
eim/p

(
dðiÞm ðkqpÞ þ bH

mðkqpÞap
m þ bK

mðkqpÞb
p
m

þ
XH

k¼1
k–p

X1
n¼�1

Ek
mnðkqpÞak

n þ Fk
mnðkqpÞb

k
n

" #)
; ð34Þ

where Ek
mnðkqpÞ; F

k
mnðkqpÞ and dðiÞm ðkqpÞ are obtained by replacing

aX
mðkqpÞ in Eqs. (29)–(31) with bX

mðkqpÞ, respectively.
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Fig. 6. DMCF on the second circular boundary B2ðh ¼ �p=2Þ versus the dimen
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Based on the traction-free conditions of Eqs. (18) and (19),
applying the orthogonal property of {eim/P } to Eqs. (28) and (34),
respectively, gives

aH
mðkRpÞap

mþaK
mðkRpÞbp

mþ
PH
k¼1
k–p

P1
n¼�1

Ck
mnðkRpÞak

nþDk
mnðkRpÞbk

n

� �
¼�cðiÞm ðkRpÞ

bH
mðkRpÞap

mþbK
mðkRpÞbp

mþ
PH
k¼1
k–p

P1
n¼�1

Ek
mnðkRpÞak

nþFk
mnðkRpÞbk

n

� �
¼�dðiÞm ðkRpÞ

8>>>>>><
>>>>>>:

;

ð35Þ

for m ¼ 0;�1;�2; . . . ;n ¼ 0;�1;�2; . . . ; and p ¼ 1; . . . ;H. Eq. (35) is
a coupled infinite system of simultaneous linear algebraic equations
which is the analytical model for the flexural scattering of an infi-
nite plate containing multiple holes. In order to evaluate the numer-
ical results in the following section, the infinite system of Eq. (35) is
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Fig. 8. Distribution of DMCF on the second circular boundary B2 at three different
dimensionless wave numbers, solid line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.1).
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truncated to a (2H)(2M+1) system of equations for (2H)(2M+1) un-
known coefficients, i.e. m ¼ 0;�1;�2; . . . ;�M. Once the coefficients
ak

m and bk
mðk ¼ 1; . . . ;H; m ¼ 0;�1;�2; . . . ;�MÞ are determined, the

total field of displacement, the bending moment and the shear force
can be obtained by substituting them into Eqs. (17), (28) and (34).

In the polar coordinates, the normal bending moment, tangen-
tial bending moment and effective shear force induced by the inci-
dent wave can be determined by substituting Eq. (10) into Eqs.
(12)–(14). By setting the amplitude of incident wave to be one
ðw0 ¼ 1Þ, the amplitude of normal bending moment produced by
the incident wave is

M0 ¼ Dk2
: ð36Þ

The dynamic moment concentration factor (DMCF) at any field
point x is defined as

DMCFðxÞ ¼ mtðxÞ=M0; ð37Þ
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Fig. 9. Distribution of DMCF on the first circular boundary B1 at three different
dimensionless wave numbers, solid line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.5).
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Fig. 10. Distribution of DMCF on the second circular boundary B2 at three different
dimensionless wave numbers, solid line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.5).
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Fig. 11. Distribution of DMCF on the first circular boundary B1 at three different
dimensionless wave numbers, solid line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 4.0).
where the tangential bending moment mtðxÞ is determined by
substituting Eq. (25) into Eq. (13) with respective to the field point.

mtðx;qp; /pÞ ¼
X1

m¼�1
eim/p

(
f ðiÞm ðkqpÞ þ cH

mðkqpÞap
m þ cK

mðkqpÞb
p
m

þ
XH

k¼1
k–p

X1
n¼�1

Gk
mnðkqpÞak

n þ Hk
mnðkqpÞb

k
n

" #)
; ð38Þ

where Gk
mnðkqpÞ;H

k
mnðkqpÞ and f ðiÞm ðkqpÞ are obtained by replacing

aX
mðkqpÞ in Eqs. (29)–(31) with cX

mðkqpÞ, respectively, and the tan-
gential bending moment operator cX

mðkqÞ derived from Eq. (13) is
given by

cX
mðkqÞ ¼ D ðl� 1ÞX

0
mðkqÞ
q

� ðl� 1Þm
2

q2 � lk2
� �

XmðkqÞ
� �

: ð39Þ
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Fig. 12. Distribution of DMCF on the second circular boundary B2 at three different
dimensionless wave numbers, solid line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 4.0).
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4. Numerical results and discussions

To demonstrate the validity of the proposed method, the FOR-
TRAN code was implemented to solve the flexural wave scattered
by three circular holes which are symmetric about the x1-axis in
an infinite thin plate as shown in Fig. 2, where L12 denotes the cen-
tral distances of the first hole and the second hole; L23 is that of the
second hole and the third hole. The notation L stands for the central
distances between holes when their separation distances are equal
to each other. The coordinates of three holes are

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

12 � ðL23=2Þ2
q

;0Þ; ð0; L23=2Þ and ð0;�L23=2Þ, respectively. The

DMCF around the circular hole is determined since it is important
to the structure design such as fatigue failure evaluation. In all
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Fig. 13. DMCF on the first circular boundary B1ð/ ¼ �p=2Þ versus the dimensionless wav
dashed line for L/a = 2.5, dot-dashed line for L/a = 4.0 and solid line for L/a = 10.0.
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Fig. 14. DMCF on the second circular boundary B2 ð/ ¼ �p=2Þ versus the dimensionle
L/a = 2.1, dashed line for L/a = 2.5, dot-dashed line for L/a = 4.0 and solid line for L/a = 10
cases, all edges of holes are subjected to the traction-free boundary
condition and the thickness of plate is 0.002 m.

Fig. 3 show DMCF on the second circular boundary B2

ðh ¼ �p=2Þ versus the dimensionless wave number by using differ-
ent truncated number of coefficients when L12=a ¼ 2:1 and
L23=a ¼ 2:1: It can be seen that the convergence is fast achieved
as the truncated number M increases. The proposed results with
M=20 match well with the convergent results provided by BIEM
(Lee and Chen, 2008) in which thirty terms of Fourier series are
used. Moreover, during the convergence, fictitious frequency
appearing in BIEM (Lee and Chen, 2008) does not appear in the
multipole Trefftz method. In the convergence analysis, the maxi-
mum of the allowable truncated number M is limited by the min-
imum value of ka considered, for instance here ka=0.1. The reason
1.5 2 2.5 3
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.0
0.0

ka 

e number at four different dimensionless central distances, dotted line for L/a = 2.1
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ka 

ss wave number at four different dimensionless central distances, dotted line for
.0.
,
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for this is that the Bessel functions of YmðkRpÞ and ImðkRpÞ of Eq.
(35) become large when k is small. Actually, the truncated number
M can increase while the concerned minimum value of ka
increases.

The convergence analyses for the case of the multiple holes
with different separation distances are shown in Figs. 4 and 5.
When L12=a ¼ 4:0 and L23=a ¼ 2:1, that is, one of the separation
distances become large, the convergent rate increases. Even though
this, the required number of M is suggested to take twenty to con-
sider the minimum separation distance. The other is the case of
L12=a ¼ 2:1 and L23=a ¼ 4:0: The convergence rate is still fast but
the approach to the convergence is from the upper rather than
the lower. When L12=a ¼ 4:0 and L23=a ¼ 4:0 shown in Fig. 6, that
is, both of the separation distances become large, the convergent
0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0/tm M

Fig. 15. DMCF on the first circular boundary B1ð/ ¼ pÞ versus the dimensionless wave
dashed line for L/a = 2.5, dot-dashed line for L/a = 4.0 and solid line for L/a = 10.0.
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Fig. 16. DMCF on the second circular boundary B2ð/ ¼ pÞ versus the dimensionless wav
dashed line for L/a = 2.5, dot-dashed line for L/a = 4.0 and solid line for L/a = 10.0.
rate significantly increases and then the required number of M
can reduce to six or eight.

In summary, to obtain the more accurate results, numerical
experiments show that the required number of M in the finite sys-
tem mainly depends on the considered minimum dimensionless
central distance L/a. Through the numerical experiments, it is
found that the required number of M can be taken from 20 to 8
for the minimum separation distance L/a ranged from 2.1 to 10.0.
Only when does the value of L/a become large such as 4.0 or
10.0, the required number of M is related to the incident wave
number. In other words, the required number of M to converge in-
creases as the incident wave number becomes larger.

Figs. 7–12 show the distribution of DMCF on the first and the
second circular boundary B1 and B2, respectively, when three
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different incident dimensionless wave numbers (ka=0.5, 1.0 and
3.0) and three different dimensionless central distance (L/a=2.1,
2.5 and 4.0) are considered. The distribution of DMCF on the third
circular boundary B3 is equal to that on the second one due to the
symmetry of the x1-axis, so that it is not presented here. It can be
observed that the distribution of DMCF of three circular holes is
different from that of one, where the maximum of DMCF occurs
at / ¼ p=2 and �p=2 when the incident wave number is small
and the incident angle equals to zero.

In addition to the incident wave number, the distribution of
DMCF apparently depends on two factors. One is the geometry
and the other is the angle of the incident wave. Since the first cir-
cular hole is located near the other circular holes at / ¼ 5p=6 and
�5p=6 where the separated space is very small and meanwhile the
incident wave is from the negative direction of the x1 axis, the
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Fig. 17. DMCF on the first circular boundary B1ð/ ¼ �p=2Þ versus the dimensionless cent
dashed line for ka = 1.0 and solid line for ka = 3.0.
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Fig. 18. DMCF on the second circular boundary B2ð/ ¼ �p=2Þ versus the dimensionles
ka = 0.5, dashed line for ka = 1.0 and solid line for ka = 3.0.
maximum of DMCF on the boundary of the first hole occurs at
/ ¼ p=2;5p=6;�5p=6 and �p=2 as shown in Fig. 7. As the value
of ka increases, the factor of geometry is obviously amplified but
that of incident angle is attenuated a little. Fig. 8 shows that the
maximum of DMCF on the boundary of the second hole occurs at
/ ¼ �p=2 and �p=6. The maximum of DMCF at / ¼ �p=6 is sim-
ilar to those of the first hole. But the maximum of DMCF at
/ ¼ �p=2 is the largest of all considered so far because two factors
simultaneously occur at this point: the narrow space and the inci-
dent flexural wave with a=0.

As the dimensionless central distance L/a increases to 2.5 and
4.0 as shown in Figs. 9–12, the DMCF gradually decreases since
the geometry factor is attenuating. Meanwhile the shadow on
the first hole coming from the other holes gradually decreases so
that the more incident wave impinges on the first holes.
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ral distance at three different dimensionless wave numbers, dotted line for ka = 0.5,
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s central distance at three different dimensionless wave numbers, dotted line for
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Accordingly, the magnitude of DMCF of the first hole at / ¼ p=2
and �p=2 becomes large instead of decreasing as shown in Figs. 7,
9 and 11. As the dimensionless incident wave number increases,
the tendency to change for the first hole is different from that for
the second hole. The former is mainly backscattering with sidescat-
tering attenuated and the latter shows obviously fluctuation along
azimuthal coordinate.

Figs. 13–16 show DMCF on the first and the second circular
boundaries at / ¼ �p=2 and p as a function of the dimensionless
incident wave number at four different dimensionless central dis-
tances, dotted line for L/a = 2.1, dashed line for L/a = 2.5, dot-dashed
line for L/a = 4.0 and solid line for L/a = 10.0. It can be seen from
Fig. 13 that the DMCF on the first circular boundary at / ¼ �p=2
is apparently related to the space between holes when the incident
wave number is small. Because of the shadow effect, the smaller
the central distance is; the smaller the DMCF is. This effect is
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Fig. 19. DMCF on the first circular boundary B1ð/ ¼ pÞ versus the dimensionless centra
dashed line for ka = 1.0 and solid line for ka = 3.0.
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Fig. 20. DMCF on the second circular boundary B2ð/ ¼ pÞ versus the dimensionless cent
dashed line for ka = 1.0 and solid line for ka = 3.0.
gradually replaced by that of the multiple scattering as the incident
wave number ka increases. Instead of the incident wave number,
the geometry factor dominates the DMCF on the second circular
boundary at / ¼ �p=2 as shown in Fig. 14. It can be seen that when
space is large enough such as L/a=10.0 and ka approaches zero, the
value of DMCF approaches 1.85 which agrees with the analytical
solution of an infinite plate with one hole (Pao and Mow, 1972).
From Figs. 15 and 16, the magnitude of DMCF on the first circular
boundary at / ¼ p is larger than that on the second boundary in-
stead of being small, since the effect of multiple scattering is
greater than that of shadow. It can be seen that as the value of ka
increases, the magnitude of DMCF along the ka becomes more
fluctuated especially for the case of the large value of L/a.

Figs. 17–20 show DMCF on the first and the second circular
boundaries at / ¼ �p=2 and p as a function of the dimensionless
central distance at three different dimensionless incident wave
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numbers, dotted line for ka = 0.5, dashed line for ka = 1.0 and solid
line for ka = 3.0. It can be seen from Fig. 17 that the shadow effect
at the low incident wave number is rapidly released as the separa-
tion distance increases. Comparing Figs. 17 with 18, even though
two plots varied in the different way, these variations will con-
verge to the same level as the value of L/a approaches to infinite.
From Figs. 19 and 20, the magnitude of DMCF on the first circular
boundary at / ¼ p is also larger than that on the second boundary.
It can be seen from Figs. 17–20 that for the high incident wave
number the DMCF shows obvious oscillation as the space among
holes varies. Actually, this oscillation exits in all cases of the inci-
dent wave number and the detail can be seen in the recent paper
of Lee and Chen (2008).

5. Concluding remarks

The flexural wave scattered by multiple circular holes in a thin
plate has been theoretically solved by using the multipole Trefftz
method. With the aid of the addition theorem, the Trefftz method
can be extended to deal with multiply-connected domain prob-
lems. The proposed algorithm is general and easily applicable to
problems with multiple holes which are not easily solved by using
the traditional analytical method. By matching boundary condi-
tions, the analytical model for the multiple scattering of the plate
problem is derived as a coupled infinite system of simultaneous
equations in which the coefficients can be determined simulta-
neously rather than recessively. The convergence analysis was
implemented and gave some guidelines on the selection of the
truncation limit in the numerical computation. An example of an
infinite plate containing three holes in a truncated system is pre-
sented and the effects of the central distance and the incident wave
number on the dynamic moment concentration factor (DMCF) are
investigated in this paper. The distribution of DMCF of three holes
is significantly different that of one. The geometry factor mainly af-
fects the distribution of DMCF, especially under the specified direc-
tion of incident wave.
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