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It is well known that the boundary element method may induce spurious eigenvalues while solving
eigenvalue problems. The finding that spurious eigenvalues depend on the geometry of inner boundary
and the approach utilized has been revealed analytically and numerically in the literature. However, all
the related efforts were focused on eigenproblems involving circular boundaries. On the other hand, the
extension to elliptical boundaries seems not straightforward and lacks of attention. Accordingly, this
paper performs an analytical investigation of spurious eigenvalues for a confocal elliptical membrane
using boundary integral equation methods (BIEM) in conjunction with separable kernels and eigenfunc-
tion expansion. To analytically study this eigenproblem, the elliptic coordinates and Mathieu functions
are adopted. The fundamental solution is expanded into the separable kernel by using the elliptic coor-
dinates and the boundary densities are expanded by using the eigenfunction expansion. The Jacobian
terms may exist in the separable kernel, boundary density and boundary contour integration and they
can cancel each other out. Therefore, the orthogonal relations are reserved in the boundary contour inte-
gration. In this way, a similar finding about the mechanism of spurious eigenvalues is found and agrees
with those corresponding to the annular case. To verify this finding, the boundary element method and
the commercial finite-element code ABAQUS are also utilized to provide eigensolutions, respectively, for
comparisons. Good agreement is observed from comparisons. Based on the adaptive observer system, the
present approach can deal with eigenproblems containing circular and elliptical boundaries at the same
time in a semi-analytical manner. By using the BIEM, it is found that spurious eigenvalues are the zeros of
the modified Mathieu functions which depend on the inner elliptical boundary and the integral formu-
lation. Finally, several methods including the CHIEF method, the SVD updating technique and the Burton
& Miller method are employed to filter out the spurious eigenvalues, respectively. In addition, the effi-
ciency of the CHIEF method is better than those of the SVD updating technique and the Burton & Miller
approach, since not only hypersingularity is avoided but also computation effort is saved.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Eigenanalysis is very important for vibration and acoustics, be-
cause it can provide some fundamental information. Since analyt-
ical solutions are sometimes not available, numerical methods are
needed. In recent years, several numerical methods were utilized
to determine eigenvalues and eigenmodes such as the finite ele-
ment method (FEM) or the boundary element method (BEM).
Although the FEM is a popular method, it needs to generate the
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mesh over the whole domain. The BEM only generates the mesh
on the boundary but it may face with the calculation of the princi-
pal value and the pollution of spurious eigenvalues. Tai and Shaw
(1974) first employed the complex-valued BEM to solve membrane
vibration. De Mey (1976) revisited this problem in 1976. Later, De
Mey (1977) proposed a simplified approach by using only the real-
part or imaginary-part kernel where he found that spurious solu-
tions were imbedded as well as the ill-posed matrix appeared. In
a similar way of using the real-part kernel, Hutchinson and Wong
(1979) and Hutchinson (1984) solved the free vibration of plate.
Also, Yasko (2000) as well as Duran et al. (2001) employed the
real-part kernel approach. It is interesting to find that Kang et al.
(1999) proposed a non-dimensional influence function (NDIF)
method which was an imaginary-part kernel approach as
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commented by Chen et al. (2002). Kamiya et al. (1996) and Yeih
et al. (1998) linked the relation of the multiple reciprocity method
(MRM) and real-part BEM independently. This is the reason why
spurious eigenvalues are also inherent in these two methods, the
MRM and the real-part BEM. However, no proof was given at that
time. Until 2000, Kuo et al. (2000) proved the existence of spurious
eigensolutions and pointed out that spurious eigenvalues occur at
the zeros of the mth-order Bessel functions of the second kind or
their derivatives through a circular membrane for the real-part
dual BEM. Later, Chen et al. (2004a), Lee and Chen (2008a) ex-
tended a circular membrane to a circular plate by using the real-
part BEM and BIEM, respectively.

Appearance of spurious eigensolutions for simply-connected
problems was due to the loss of constraint by only using the real
or the imaginary-part kernel (Kuo et al., 2000; Chen et al.,
2009a). Tai and Shaw (1974) claimed that spurious eigenvalues
do not appear if the complex-valued kernels are employed. How-
ever, it is true only for simply-connected domain. Even though
we employ the complex-valued kernels for the multiply-con-
nected eigenproblems, the spurious eigensolutions also occur
(Kitahara, 1985; Chen et al., 2001, 2003). Kobayashi and Nishim-
ura (1982) have identified that spurious eigenvalues (irregular
frequencies) for multiply-connected domains using the singular
formulation are the eigenfrequencies of the Dirichlet problem
containing the inner boundary. From their arguments, it is quite
obvious that the spurious eigenvalues in the singular (resp.
hypersingular) formulation for multiply-connected domains are
the Dirichlet (resp. Neumann) eigenfrequencies of problems con-
taining the inner boundary. Since the doubly-connected eigen-
problem can be decomposed into two parts, one is an exterior
problem bounded by interior boundary and the other is an inte-
rior problem. Mathematically speaking, a spurious eigenvalue for
the doubly-connected problem originates from the same ficti-
tious frequency for the exterior part problem. It is interesting
to find that the spurious eigenvalues of the annular domain de-
pend on the geometry of inner boundary and the integral formu-
lation. This finding was analytically verified by Chen et al. (2003).
This finding is the same with the viewpoint of Kobayashi and
Nishimura (1982).

It is well known that fictitious frequency appears in the exterior
Helmholtz problem. The Burton & Miller approach (Burton and
Miller, 1971) and the combined Helmholtz interior integral equa-
tion formulation (CHIEF) method (Schenck, 1968; Seybert and
Rengarajan, 1987) have been proposed to deal with the fictitious
frequency problem of the exterior acoustics. Furthermore, Chen
et al. (2001, 2003, 2007) extended the Burton & Miller approach
as well as the CHIEF method to filter out the spurious eigenvalues
for the multiply-connected eigenproblems. Spurious eigenvalues
can be fully filtered out by using the Burton & Miller approach,
but it needs the computation of the hypersingular equation. The
CHIEF method may fail if one uses inappropriate CHIEF points in
order to add independent equations. If the location of the CHIEF
point is located on the nodal line of the interior problems (Chen
et al., 2003), the appearance of fictitious frequency may not be sup-
pressed. Besides, Chen and his co-workers (2003, 2004b, 2005,
2007, 2008b, 2009a, 2010a) employed the singular value decompo-
sition (SVD) updating technique to detect spurious eigenvalues.
Not only true eigenvalues but also spurious eigenvalues can be ex-
tracted out by using the SVD updating terms and SVD updating
documents, respectively. This technique has been successfully em-
ployed for rod (Chen et al., 2009a), circular membrane (Chen et al.,
2003, 2005, 2007), plate (Lee and Chen, 2008b) and concentric
sphere cavity (Chen et al., 2010a).

Chen et al. (2001, 2003) studied spurious eigenvalues of circular
membranes in both the continuous and discrete systems by using
the separable kernel and circulant, respectively. Note that the term
of the separable kernel is adopted in the paper to imply an infinite-
rank expansion of a closed-form fundamental solution. It is to
avoid the confusion with the degenerate kernel defined by Courant
and Hilbert (1989) to be a kernel with a finite-rank expansion to
approximate the closed-form fundamental solution. In numerical
implementation, we adopt the separate kernel for the fundamental
solution since finite terms of expansion are considered. In the pa-
per, we aim to extend successful experiences in annular mem-
branes (Chen et al., 2001, 2003) to deal with eigenproblems
containing elliptical boundaries. However, the circulant property
is no longer present for the ellipse. A special care should be taken
to derive a separable kernel in the elliptic coordinates which is not
straightforward to obtain. Regarding eigenproblems with elliptical
boundaries, Troesch and Troesch (1973) used the separation of
variables to obtain the eigenfrequencies and nodal patterns of an
elliptic membrane. Hong and Kim (1995) also employed the sepa-
ration of variables to determine the natural mode of hollow and
elliptical annulus for cylindrical cavities. Both the elliptic coordi-
nates and the Mathieu functions were used in the previous
investigations.

Recently, Chen et al. (2007) developed the null-field boundary
integral equation method (BIEM) in conjunction with the separable
kernel and the Fourier series to solve the eigenproblems containing
circular boundaries. By introducing the separable kernels, the cal-
culation of the singular and hypersingular integrations in the sense
of principal value by using bump contour are free when the collo-
cation point is exactly located on the real boundary. This approach
is one kind of semi-analytical and meshless methods. Later, Chen
et al. (2010b) extend the BIEM to deal with torsion problems con-
taining multiple elliptical inclusions. The key point is that the sep-
arable kernel in terms of the elliptic coordinates is available in the
Morse and Feshbach’s book (1953).

In this paper, we will derive the BIE formulations and extend
to solve eigenproblems containing elliptical boundaries. The
BIEM is utilized in conjunction with the separable kernel and
the eigenfunction expansion for the closed-form fundamental
solution and boundary densities, respectively. To fully utilize
the elliptical geometry, the elliptic coordinates in companion
with the Mathieu function (Morse and Feshbach, 1953; Abramo-
witz and Stegun, 1965; Zhang and Jin, 1996) are used. The fun-
damental solution is expanded to the separable kernel by using
the elliptic coordinates (Morse and Feshbach, 1953). Also, the
boundary densities are expanded by using the eigenfunction
expansion in companion with a Jacobian term. The advantage
of free of calculating principal value is gained. Following the suc-
cessful experience of the annular case (Chen et al., 2003), we ex-
tend to the elliptical case in this paper. In order to analytically
verify the occurring mechanism of the spurious eigenvalues for
multiply-connected problem containing elliptical boundaries,
the confocal elliptical membrane is considered. The boundary
element method is also implemented to demonstrate the finding
by using the present approach. Furthermore, the commercial fi-
nite-element code ABAQUS is also utilized to provide eigensolu-
tions for comparisons. As mentioned above, it is already known
in the literature by Kobayashi and Nishimura (1982) that spuri-
ous eigensolutions depend on the geometry of inner boundary
and the approach used. However, all the related efforts were fo-
cused on eigenproblems involving circular boundaries. Spurious
eigenvalue of a confocal elliptical membrane have not been ana-
lytically studied in detail by using the BIEM to the authors’ best
knowledge. Accordingly, this paper is focused on analytically
deriving the true and spurious eigenequations of a confocal ellip-
tical membrane by using the BIEM. Finally, we also employ
CHIEF method, the SVD updating technique and the Burton &
Miller approach to suppress the spurious appearance of
eigenvalues.
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2. Problem statement and the present approach

2.1. Problem statement

For the eigenproblem of a multiply-connected membrane, the
governing equation is the Helmholtz equation as follows:

ðr2 þ k2ÞuðxÞ ¼ 0; x 2 D; ð1Þ

where r2 is the Laplacian operator, k is the wave number, u(x) is
the displacement of the membrane, x is the field point and D is
the domain of interest.

2.2. Dual boundary integral formulations – the conventional version

Based on the Green’s third identity, the dual boundary integral
equations for the domain point are shown below:

2puðxÞ ¼
Z

B
Tðs;xÞuðsÞdBðsÞ �

Z
B

Uðs;xÞtðsÞdBðsÞ; x 2 D; ð2Þ

2ptðxÞ ¼
Z

B
Mðs; xÞuðsÞdBðsÞ �

Z
B

Lðs;xÞtðsÞdBðsÞ; x 2 D; ð3Þ

where s is the source point, B is the boundary of membrane, t is the
normal derivative of displacement and U(s,x) is the fundamental
function which satisfies

ðr2 þ k2ÞUðs; xÞ ¼ 2pdðx� sÞ; ð4Þ

where d is the Dirac-delta function. The other kernel functions
T(s,x), L(s,x) and M(s,x) are defined by

Tðs; xÞ ¼ @Uðs; xÞ
@ns

; ð5Þ

Lðs; xÞ ¼ @Uðs; xÞ
@nx

; ð6Þ

Mðs;xÞ ¼ @
2Uðs;xÞ
@ns@nx

; ð7Þ

where nx and ns denote the unit outward normal vector at the field
point and the source point, respectively. By moving the field point x
to the boundary which is smooth, the dual boundary integral equa-
tions for the boundary point can be obtained as follows:

puðxÞ ¼ C:P:V :
Z

B
Tðs; xÞuðsÞdBðsÞ

� R:P:V :
Z

B
Uðs;xÞtðsÞdBðsÞ; x 2 B; ð8Þ

ptðxÞ ¼ H:P:V :
Z

B
Mðs;xÞuðsÞdBðsÞ

� C:P:V :
Z

B
Lðs;xÞtðsÞdBðsÞ; x 2 B; ð9Þ
Uðs;xÞ ¼
�2pi

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJemðq; nsÞHemðq; nxÞþ

P1
m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJomðq; nsÞHomðq; nxÞ

�
; nx P ns;

�

�2pi
P1

m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJemðq; nxÞHemðq; nsÞþ

P1
m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJomðq; nxÞHomðq; nsÞ

�
; nx < ns;

�
8>>><
>>>:

ð17Þ
where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value
(Riemann sum), Cauchy principal value and Hadamard (or so-called
Mangler) principal value, respectively. By collocating the field point
x on the complementary domain, we obtain the dual null-field
boundary integral equations as shown below:
0 ¼
Z

B
Tðs;xÞuðsÞdBðsÞ �

Z
B

Uðs;xÞtðsÞdBðsÞ; x 2 Dc; ð10Þ

0 ¼
Z

B
Mðs; xÞuðsÞdBðsÞ �

Z
B

Lðs;xÞtðsÞdBðsÞ; x 2 Dc; ð11Þ

where Dc denote the complementary domain.

2.3. Dual boundary integral formulations — the present version

By introducing the separable kernels, the collocation point in
Eqs. (2), (3), (10) and (11) can be located on the real boundary
without need of calculating principal value. Therefore, the dual
BIE and dual null-field BIE can be rewritten in two parts as given
in the following formulation of Eqs. (12) and (14), instead of three
parts using Eqs. (2), (8) and (10) in the conventional BEM

2puðxÞ ¼
Z

B
Tðs; xÞuðsÞdBðsÞ �

Z
B

Uðs; xÞtðsÞdBðsÞ; x 2 D [ B;

ð12Þ

2ptðxÞ ¼
Z

B
Mðs;xÞuðsÞdBðsÞ �

Z
B

Lðs;xÞtðsÞdBðsÞ; x 2 D [ B;

ð13Þ

and

0 ¼
Z

B
Tðs;xÞuðsÞdBðsÞ �

Z
B

Uðs;xÞtðsÞdBðsÞ; x 2 Dc [ B; ð14Þ

0 ¼
Z

B
Mðs; xÞuðsÞdBðsÞ �

Z
B

Lðs;xÞtðsÞdBðsÞ; x 2 Dc [ B: ð15Þ

It is noted that Eqs. (12)–(15) can contain the boundary point
(x ? B) since the kernel functions (U,T,L and M) are expressed in
terms of various separable kernels which will be elaborated on later
in Eqs. (17) and (25)–(27).

2.4. Expansions of fundamental solution and boundary density using
the elliptic coordinates

The closed-form fundamental solution as previously mentioned
is

Uðs;xÞ ¼ � ipHð1Þ0 ðkrÞ
2

; ð16Þ

where r � js � xj is the distance between the source point and the
field point, i is the imaginary number with i2 = �1 and Hð1Þ0 is the
zeroth-order Hankel function of the first kind. To fully utilize the
property of elliptical geometry, the separable kernel and eigenfunc-
tion expansion are utilized for the analytical integration of bound-
ary integrals. In the elliptic coordinates, the field point x and
source point s can be expressed as x = (nx,gx) and s = (ns,gs), respec-
tively. The fundamental solution, U(s,x), can be expanded in terms
of separable kernel as shown below:
where (n,g) is the elliptic coordinates, the parameter q is defined by

q ¼ ðck=2Þ2; ð18Þ

where c is the half distance between two foci, Sem and Som are the
mth-order even and odd Mathieu functions (angular Mathieu
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functions), respectively, Jem and Jom are the mth-order even and odd
modified Mathieu functions (radial Mathieu functions) of the first
kind, respectively, Hem and Hom are the even and odd mth-order
modified Mathieu functions (Mathieu-Hankel functions) of the
third kind, respectively and are defined as

Hemðq; nÞ ¼ Jemðq; nÞ þ iYemðq; nÞ; ð19Þ

Homðq; nÞ ¼ Jomðq; nÞ þ iYomðq; nÞ; ð20Þ

in which, Yem and Yom are the mth-order even and odd modified
Mathieu functions of the second kind, respectively, Me

m and Mo
m

are the normalized constants for the norm of angular Mathieu func-
tion and can be determined by

Me
mðqÞ ¼

Z p

�p
ðSemðq;gÞÞ2dg ¼ p; ð21Þ

Mo
mðqÞ ¼

Z p

�p
ðSomðq;gÞÞ2dg ¼ p: ð22Þ

The contour plots of the closed-form fundamental solution and the
separable kernel by using Eqs. (16) and (17), respectively, are
shown in Table 1. After comparing with the two different represen-
tations, the closed-form fundamental solution (Eq. (16)) and separa-
ble kernel (Eq. (17)), agreement is made. The normal derivative on
the boundary point along the elliptic curve in terms of the elliptic
coordinates is defined by

tðxÞ ¼ @uðxÞ
@nx

¼ 1
Jx

@uðxÞ
@nx

; x 2 B; ð23Þ

where Jx is the Jacobian term of the field point x as shown below:

Jx ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðnxÞ cosðgxÞð Þ2 þ coshðnxÞ sinðgxÞð Þ2

q
: ð24Þ

Then, the other kernel functions, T(s,x), L(s,x) and M(s,x) can be
obtained by using Eqs. (5)–(7) as shown below:
Tðs;xÞ ¼
�2pi 1

Js

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJe

0
mðq; nsÞHemðq; nxÞ þ

P1
m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJo

0
mðq; nsÞHomðq; nxÞ

� �
; nx > ns;

�2pi 1
Js

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJemðq; nxÞHe0mðq; nsÞ þ

P1
m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJomðq; nxÞHo0mðq; nsÞ

� �
; nx < ns;

8>>><
>>>:

ð25Þ

Lðs;xÞ ¼
�2pi 1

Jx

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJemðq; nsÞHe0mðq; nxÞ þ

P1
m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJomðq; nsÞHo0mðq; nxÞ

� �
; nx > ns;

�2pi 1
Jx

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJe

0
mðq; nxÞHemðq; nsÞ

�
þ
P1

m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJo

0
mðq; nxÞHomðq; nsÞ

�
; nx < ns;

8>>><
>>>:

ð26Þ

Mðs;xÞ ¼
�2pi 1

JsJx

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJe

0
mðq; nsÞHe0mðq; nxÞ

�
þ
P1

m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJo

0
mðq; nsÞHo0mðq; nxÞ

�
; nx P ns;

�2pi 1
JsJx

P1
m¼0

Semðq;gsÞ
Me

mðqÞ

h i
Semðq;gxÞJe

0
mðq; nxÞHe0mðq; nsÞ

�
þ
P1

m¼1

Somðq;gsÞ
Mo

mðqÞ

h i
Somðq;gxÞJo

0
mðq; nxÞHo0mðq; nsÞ

�
; nx < ns;

8>>><
>>>:

ð27Þ
where Js is the Jacobian term of the source point, s, as shown
below:
Js ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðnsÞ cosðgsÞð Þ2 þ coshðnsÞ sinðgsÞð Þ2

q
: ð28Þ
It is noted that U(s,x), and M(s,x) kernels in Eqs. (17) and (27),
respectively, contain the equal sign of nx = ns. Since the potential re-
sult from T(s,x), and L(s,x) kernels are discontininous across the
boundary, the potentials of T(s,x), and L(s,x) kernels for nx ! nþs
and nx ! n�s are different. This is the reason why nx = ns is not
included in the separable kernels of T(s,x), and L(s,x) kernels in
Eqs. (25) and (26), respectively. The orthogonal relations of the
angular Mathieu functions are shown below:Z p

�p
Semðq;gÞSenðq;gÞdg ¼

p; m ¼ n;

0; m–n;

�
ð29Þ

Z p

�p
Somðq;gÞSonðq;gÞdg ¼

p; m ¼ n;

0; m–n;

�
ð30Þ

Z p

�p
Semðq;gÞSonðq;gÞdg ¼ 0: ð31Þ

In order to fully utilize the orthogonal relations of the angular Mat-
hieu functions, we apply the eigenfunction expansion to approxi-
mate the unknown boundary densities. The displacement, u(s),
and its normal derivative, tðsÞ ¼ 1

Js

@uðsÞ
@ns

along the elliptical boundary,
can be adaptively expressed as

uðsÞ ¼
X1
n¼0

gnSenðq;gsÞ þ
X1
n¼1

hnSonðq;gsÞ; s 2 B; ð32Þ

tðsÞ ¼ 1
Js

X1
n¼0

pnSenðq;gsÞ þ
X1
n¼1

qnSonðq;gsÞ
!
; s 2 B

 
; ð33Þ

respectively, where gn, hn, pn and qn are the unknown coefficients of
the eigenfunctions. The Jacobian term Js may appear either in the
kernel functions of Eqs. (25)–(27), the boundary densities of Eq.
(33) or the elliptical boundary contour integration (dB(s) = Jsdgs).
We may worry about the possible failure of orthogonal relations
for the Mathieu bases due to the presence of Js. Fortunately, the
Jacobian terms can be cancelled each other out. Therefore, the
orthogonal relations can be fully utilized in the contour integration
of elliptical boundary and boundary integrals can be analytically
determined.
3. Analytical derivations for true and spurious eigensolutions of
a confocal elliptical membrane using the separable kernels

Following successful experiences in annular membranes (Chen
et al., 2001, 2003), it has been revealed that the corresponding
mechanism of the spurious eigensolutions of the multiply-con-
nected problem containing circular boundaries depends on the
geometry of inner boundary and the integral formulation. Now,
we extend to study elliptical cases by using Eqs. (14) and (15) in
conjunction with the elliptic coordinates and the Mathieu func-
tions. A confocal elliptical membrane is considered as shown in
Fig. 1. In order to analytically study the problem, the same half



Table 1
Sketch of contour plots of the closed-form fundamental solution and the separable kernel (k ¼ 0:4; gs ¼ p

4 ; a ¼ 1; b ¼ 0:5Þ.

Amplitude Real-part Imaginary-part

Closed-form fundamental
solution using Eq. (16)

Separable kernel using Eq.
(17)

Fig. 1. A confocal elliptical membrane.
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distance between two foci is used, i.e., the parameters of the con-
focal ellipse are n = n0 and n = n1 for outer and inner boundaries,
respectively. The confocal membrane is subject to fixed–fixed
B.C. as shown below:

uðxÞ ¼ 0; x 2 B0 [ B1; ð34Þ

Eqs. (14) and (15) are written as

0 ¼
X1

j¼0

Z
Bj

Uðsj; xÞtðsjÞdBðsjÞ; x 2 Dc [ B; ð35Þ

0 ¼
X1

j¼0

Z
Bj

Lðsj; xÞtðsjÞdBðsjÞ; x 2 Dc [ B; ð36Þ

and boundary densities are expressed by

t0ðsÞ ¼
1
Js

X1
n¼0

p0
nSenðq;gsÞ

 
þ
X1
n¼1

q0
nSonðq;gsÞ

!
; s 2 B0; ð37Þ

t1ðsÞ ¼
1
Js

X1
n¼0

p1
nSenðq;gsÞ

 
þ
X1
n¼1

q1
nSonðq;gsÞ

!
; s 2 B1; ð38Þ

where pj
n and qj

n are the unknown coefficients of the eigenfunctions
on Bj (j = 0,1). Substituting Eqs. (37) and (38) to Eq. (35) and collo-
cating the field point exactly on the outer boundary B0, we have

� 2pi
X1
m¼0

p0
mSemðq;gÞJemðq; n0ÞHemðq; n0Þ

 

þ
X1
m¼1

q0
mSomðq;gÞJomðq; n0ÞHomðq; n0Þ

þ
X1
m¼0

p1
mSemðq;gÞJemðq; n1ÞHemðq; n0Þ

þ
X1
m¼1

q1
mSomðq;gÞJomðq; n1ÞHomðq; n0Þ

!
¼ 0: ð39Þ
By collocating the field point of Eq. (35) exactly on the inner bound-
ary B1, we have

� 2pi
X1
m¼0

p0
mSemðq;gÞJemðq; n1ÞHemðq; n0Þ

 

þ
X1
m¼1

q0
mSomðq;gÞJomðq; n1ÞHomðq; n0Þ

þ
X1
m¼0

p1
mSemðq;gÞJemðq; n1ÞHemðq; n1Þ

þ
X1
m¼1

q1
mSomðq;gÞJomðq; n1ÞHomðq; n1Þ

!
¼ 0: ð40Þ

According to Eqs. (39) and (40), we obtain the relation between
p0

m; q0
m and p1

m; q1
m as follows:

p0
m ¼ �

Jemðq; n1ÞHemðq; n0Þ
Jemðq; n0ÞHemðq; n0Þ

p1
m; m ¼ 0;1;2 . . . ; ð41Þ

q0
m ¼ �

Jomðq; n1ÞHomðq; n0Þ
Jomðq; n0ÞHomðq; n0Þ

q1
m; m ¼ 1;2 . . . ; ð42Þ



Table 2
True and spurious eigenequations for the confocal elliptical annulus subject to various boundary conditions.
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UT Eq. (14) True
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0ξ ξ=
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1ξ ξ=

Jemðq; n0ÞYemðq; n1Þ
�Jemðq; n1ÞYemðq; n0Þ ¼ 0

Je0mðq; n0ÞYemðq; n1Þ
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�Je0mðq; n1ÞYemðq; n0Þ ¼ 0
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Jomðq; n0ÞYomðq; n1Þ
�Jomðq; n1ÞYomðq; n0Þ ¼ 0

Jo0mðq; n0ÞYomðq; n1Þ
�Jomðq; n1ÞYo0mðq; n0Þ ¼ 0

Jomðq; n0ÞYo0mðq; n1Þ
�Jo0mðq; n1ÞYomðq; n0Þ ¼ 0

Jo0mðq; n0ÞYo0mðq; n1Þ
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×

×
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×
1ξ ξ=
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Je0mðq; n0ÞYemðq; n1Þ
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�Je0mðq; n1ÞYemðq; n0Þ ¼ 0

Je0mðq; n0ÞYe0mðq; n1Þ
�Je0mðq; n1ÞYe0mðq; n0Þ ¼ 0

Jomðq; n0ÞYomðq; n1Þ
�Jomðq; n1ÞYomðq; n0Þ ¼ 0

Jo0mðq; n0ÞYomðq; n1Þ
�Jomðq; n1ÞYo0mðq; n0Þ ¼ 0

Jomðq; n0ÞYo0mðq; n1Þ
�Jo0mðq; n1ÞYomðq; n0Þ ¼ 0

Jo0mðq; n0ÞYo0mðq; n1Þ
�Jo0mðq; n1ÞYo0mðq; n0Þ ¼ 0

0r

1r
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�Jmðkr1ÞY 0mðkr0Þ
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0ξ ξ=

×

×
1ξ ξ=

Je0mðq; n1Þ ¼ 0 Je0mðq; n1Þ ¼ 0 Je0mðq; n1Þ ¼ 0 Je0mðq; n1Þ ¼ 0
Jo0mðq; n1Þ ¼ 0 Jo0mðq; n1Þ ¼ 0 Jo0mðq; n1Þ ¼ 0 Jo0mðq; n1Þ ¼ 0

0r

1r

J0mðkr1Þ ¼ 0 (annular case) J0mðkr1Þ ¼ 0 (annular case) J0mðkr1Þ ¼ 0
(annular case)

J0mðkr1Þ ¼ 0(annular case)
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and

p0
m ¼ �

Jemðq; n1ÞHemðq; n1Þ
Jemðq; n1ÞHemðq; n0Þ

p1
m; m ¼ 0;1;2 . . . ; ð43Þ
q0
m ¼ �

Jomðq; n1ÞHomðq; n1Þ
Jomðq; n1ÞHomðq; n0Þ

q1
m; m ¼ 1;2 . . . ; ð44Þ

respectively. Combining Eqs. (41)–(44), we obtain four possible
eigenequations,
Jemðq; n0ÞYemðq; n1Þ � Jemðq; n1ÞYemðq; n0Þ ¼ 0; m ¼ 0;1;2 . . . ;

ð45Þ

Jomðq; n0ÞYomðq; n1Þ � Jomðq; n1ÞYomðq; n0Þ ¼ 0; m ¼ 1;2 . . . ;

ð46Þ

and

Jemðq; n1Þ ¼ 0; m ¼ 0;1;2 . . . ; ð47Þ
Jomðq; n1Þ ¼ 0; m ¼ 1;2 . . . : ð48Þ



Fig. 2. A circular membrane containing an elliptical hole.
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Based on Eq. (36), we obtain four possible eigenequations. Namely,
the following two equations

Je0mðq; n1Þ ¼ 0; m ¼ 0;1;2 . . . ; ð49Þ
Jo0mðq; n1Þ ¼ 0; m ¼ 1;2 . . . ; ð50Þ
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Fig. 3. Detection of possible eigenvalues for the fixed–fixed confocal elliptical m
and the other two are the same with Eqs. (45) and (46). If we em-
ploy two different approaches to solve the same problem, we
should obtain the same true solution. Therefore, it indicates that
Eqs. (47), (48) and Eqs. (49), (50) are the spurious eigenequations
by using Eqs. (35) and (36), respectively. The true and spurious
eigenequations for problems with various boundary conditions
(free–fixed, fixed–free and free–free) are shown in Table 2. It is
interesting to find that spurious eigenequations depend on the
geometry of inner boundary and the approach used. This conclusion
agrees well with that of the annular case (Chen et al., 2001, 2003).
4. Numerical detection of true and spurious eigenvalues using
the conventional dual BEMs in conjunction with the SVD
technique

In order to demonstrate the validity of the analytical solution by
using the BIEM, we employ the BEM for comparisons. By employ-
ing the constant element scheme and moving the field point x
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embrane by plotting the minimum singular value r1 versus k in the BEM.



Table 3
The former ten possible eigenvalues of a confocal elliptical membrane subject to the fixed–fixed boundary condition by using the singular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method (3.777) (5.010) 5.104 5.104 5.699 5.709 6.251 6.306 (6.334) 6.716
BEM(No. elements = 100) (3.783) (5.018) 5.112 5.112 5.707 5.717 6.259 6.314 (6.343) 6.725
ABAQUS (No. elements = 2460) – – 5.104 5.104 5.699 5.709 6.251 6.306 – 6.716

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the mth-order (even or odd) modified Mathieu functions of the first kind,
(Jem(q,n1) or Jom(q,n1)).

Table 4
The former ten possible eigenvalues of a confocal elliptical membrane subject to the fixed–fixed boundary condition by using the hypersingular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method (0) (1.874) (3.419) (3.535) (4.641) (4.929) 5.104 5.104 5.699 5.709
BEM (No. elements = 100) (0.308) (1.919) (3.442) (3.534) (4.626) (4.931) 5.101 5.125 5.701 5.767
ABAQUS (No. elements = 2460) – – – – – – 5.104 5.104 5.699 5.709

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the derivative for mth-order (even or odd) modified Mathieu functions of
the first kind, ðJe0mðq; n1Þ or Jo0mðq; n1ÞÞ.
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Fig. 4. Detection of possible eigenvalues for the free–free confocal elliptical membrane by plotting the minimum singular value r1 versus k in the BEM.
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Table 5
The former ten possible eigenvalues of a confocal elliptical membrane subject to the free–free boundary condition by using the singular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method 0 0.893 1.064 1.922 1.981 2.895 2.914 (3.777) 3.835 3.840
BEM (No. elements = 100) 0 0.894 1.067 1.926 1.986 2.903 2.921 (3.785) 3.846 3.851
ABAQUS (No. elements = 2460) 0 0.893 1.064 1.922 1.981 2.895 2.913 – 3.835 3.840

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the mth-order (even or odd) modified Mathieu functions of the first kind,
(Jem(q,n1) or Jom(q,n1)).

Table 6
The former ten possible eigenvalues of a confocal elliptical membrane subject to the free–free boundary condition by using the hypersingular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method 0 (0) 0.893 1.064 (1.874) 1.922 1.981 2.895 2.914 (3.419)
BEM (No. elements = 100) 0 (0) 0.885 1.076 (1.887) 1.922 1.989 2.899 2.921 (3.435)
ABAQUS (No. elements = 2460) 0 – 0.893 1.064 – 1.922 1.981 2.895 2.913 –

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the derivative for mth-order (even or odd) modified Mathieu functions of
the first kind, ðJe0mðq; n1Þ or Jo0mðq; n1ÞÞ.
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close to the boundary B, we obtain the following linear algebraic
equations from Eqs. (10) and (11)

½U�ftg ¼ ½T�fug; ð51Þ
½L�ftg ¼ ½M�fug; ð52Þ

where [U], [T], [L] and [M] are influence matrices with a dimension
N by N, in which N is the number of the constant element. The de-
tailed formulation can be found in (Chen and Chen, 1998). The two
column vectors of {u} and {t} are boundary data with a dimension
of N by 1. After matching the Dirichlet or Neumann boundary con-
ditions, we have

½U�ftg ¼ f0g; ð53Þ
½L�ftg ¼ f0g; ð54Þ

for the Dirichlet problem by using Eqs. (51) and (52), respectively,
and

½T�fug ¼ f0g; ð55Þ
½M�fug ¼ f0g; ð56Þ

for the Neumann problem by using Eqs. (51) and (52), respectively.
For the existence of non-trivial solution of {t} or {u}, the determi-
nant of four influence matrices, [U], [T], [L] and [M], at the eigen-
value of k must be zero. In other words, the minimum singular
value r1 of the influence matrix is equal to zero in the SVD scheme
(Kuo et al., 2000; Chen et al., 2009), when k is an eigenvalue. Then,
we can detect eigenvalues by plotting a figure of the minimum sin-
gular value r1 versus k. The possible eigenvalues appear at the posi-
tions of drops. In the numerical implementation, we used the IMSL
routine LSVCR for the SVD which is based on the LINPACK routine
CSVDC (Dongarra et al., 1979).

5. Treatment of the spurious eigenvalues for multiply-
connected eigenproblems

Regarding multiply-connected eigenproblems, the spurious
eigenvalues may occur since the BEM or BIEM is employed to solve
the eigenproblems. They can be seen as a combination of an inte-
rior problem and many exterior problems. The fictitious frequency
of exterior problems is the source that BEM/BIEM result in spurious
eigenvalues for multiply-connected eigenproblems. This is the rea-
son why spurious eigenvalues may appear in multiply-connected
eigenproblems. In order to suppress the appearance of the spurious
eigenvalues, three methods of extracting out true and spurious
eigenvalues, including the CHIEF method (Chen et al., 2003), the
SVD updating technique (Chen et al., 2003, 2004b, 2005, 2007,
2008b, 2009a, 2010a), and the Burton & Miller approach (Chen
et al., 2001, 2007) are adopted, respectively.

5.1. CHIEF method

Since spurious eigenvalues result from the rank deficiency of
influence matrix, we must add extra independent constrains to
promote the rank of influence matrix. We employ the CHIEF meth-
od in conjunction with the SVD technique. According to the con-
cept of CHIEF, we consider the additional collocation points in
the region inside the inner boundary to obtain the null-field BIE
by using Eq. (10)

UC
M�N

h i
ftg ¼ TC

M�N

h i
fug; ð57Þ

where the superscript C denotes collocation null-field points on the
complementary domain and M is the number of CHIEF points. By
combining Eq. (51) with Eq. (57), the over-determined system is ob-
tained as

UN�N

UC
M�N

� �
ftg ¼

TN�N

TC
M�N

� �
fug: ð58Þ

Then, we apply the SVD technique to the assemble matrices for
detecting the eigenvalues. If the CHIEF points are located on the
appropriate positions, the spurious eigenvalues can be filtered
out. Once the positions of CHIEF points are corresponding to the no-
dal lines of interior problem (Chen et al., 2003, 2009b), those points
create the dependent equation and the spurious eigenvalues may
still exist.

5.2. SVD updating technique

In this subsection, the true and spurious eigenvalues are de-
tected by using the SVD updating terms and the SVD updating doc-
uments, respectively. These techniques have been successfully
employed for rod (Chen et al., 2009a), membrane (Chen et al.,
2003, 2004b, 2005, 2007), plate (Lee and Chen, 2008a,b) and con-
centric sphere cavity (Chen et al., 2010a). Now, we will utilize
the SVD updating technique to deal with the eigenproblems con-
taining elliptical boundaries.
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5.2.1. SVD updating terms to extract out true eigenvalues
The true eigenvalues are dependent on the geometry and

boundary conditions and independent of the formulations used.
Based on the scheme of SVD updating terms, we combine Eqs.
(53) and (54) as shown below:

U
L

� �
ftg ¼ f0g: ð59Þ

Then, the true eigenvalues of the Dirichlet boundary condition can

be extracted out by plotting the minimum singular value of U
L

� �
versus k free of the pollution of spurious eigenvalues. Similarly,
the true eigenvalues of the Neumann boundary condition can be de-
tected by combining Eqs. (55) and (56) as shown below:

T
M

� �
ftg ¼ f0g: ð60Þ
5.2.2. SVD updating documents to extract out spurious eigenvalues
As previously mentioned (Chen et al., 2003), spurious eigen-

values depend on the geometry of inner boundary and the approach
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Fig. 5. Extraction of true eigenvalues for the confocal elliptical membrane by plotting th
updating technique and (3) Burton & Miller approach.
used (singular or hypersingular) instead of the types of boundary
condition. When we employ the singular formulation, the spurious
eigenvalues are found to be embedded in both the Dirichlet bound-
ary condition (Eq. (53)) and Neumann boundary condition (Eq.
(55)). According to the Fredholm alternative theorem, there exists
a nontrivial {/S} vector for the spurious eigenvalue k

UH

TH

" #
f/Sg ¼ f0g; ð61Þ

or

f/Sg
H U T½ � ¼ f0gH

; ð62Þ

where the superscript H denotes the Hermitian operator and {/S} is
the spurious mode corresponding to the spurious eigenvalue. The
detailed derivation can be found in Chen et al. (2003). Similarly,
the spurious eigenvalues of the hypersingular formulation can be
detected by combining Eqs. (54) and (56) as shown below:
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k
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LH

MH

" #
f�/Sg ¼ f0g; ð63Þ

or

f�/SgH L M½ � ¼ f0gH
; ð64Þ

where f�/Sg is the spurious mode due to the hypersingular
formulation.

5.3. Burton and Miller approach

By extending the idea of Burton & Miller approach (Chen et al.,
2001, 2007) for exterior acoustics to filter out spurious eigen-
values, we combine the singular integral formulation and the
hypersingular formulation with an imaginary constant in the
BEM or BIEM as given below:

½ik½U� þ ½L�� tf g ¼ ½ik½T� þ ½M��fug: ð65Þ

Thus, only the true eigenvalues are obtained by using the Burton &
Miller approach.
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Fig. 6. Extraction of spurious eigenvalues in the BEM by plotting the mi
6. Illustrative examples

In order to demonstrate the validity of the present approaches,
we consider a confocal elliptical membrane and a circular mem-
brane containing an elliptical hole as shown in Figs. 1 and 2,
respectively. The eigensolutions of the confocal case can be ob-
tained by using the analytical derivation. Also, the FEM result is
utilized for validations. Note that, the second-order acoustic
elements AC2D8 of ABAQUS are adopted in the mesh of the
finite-element models.
6.1. A confocal elliptical membrane

In this case, a confocal elliptical membrane is considered. The
half lengths of major and minor for the inner boundary are a1 = 1
and b1 = 0.5, respectively. The radial parameter n of the inner
boundary is n1 = tanh�1(b1/a1) and the outer boundary is described
by n0 = 2n1. Figs. 3(a) and (b) show the minimum singular value
versus k for the fixed–fixed boundary condition. Note that, the
drops indicate the possible eigenvalues by using the singular for-
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mulation (Eq. (53)) and hypersingular formulation (Eq. (54)),
respectively. To summarize, we list the former ten possible eiegn-
values in Tables 3 and 4 including the results of the analytical solu-
tions and the FEM. Good agreement is made. It is found that no
spurious eigenvalues appear in the data of FEM. True and spurious
eigenvalues are analytically predicted and numerically verified by
using the BIEM and BEM, respectively. The true eigenvalue of
k = 5.112 has algebraic multiplicity two since the rank deficiency
of the [U] is equal to two. Furthermore, the eigenvalue of
k = 5.104 can be analytically predicted from Eq. (45) (m = 0) and
(46) (m = 1). For the free–free boundary condition, Figs. 4(a) and
(b) show the minimum singular value versus k by using the singu-
lar formulation (Eq. (55)) and hypersingular formulation (Eq. (56)),
respectively. The former ten possible eiegnvalues are listed in
Tables 5 and 6. It is interesting that the zero eigenvalue is not only
Table 7
The former five modes for a confocal elliptical membrane subject to the fixed–fixed boun

Method Eigenmode

Mode 1 Mode 2

Present method

BEM (UT) (No. elements = 100)

ABAQUS (No. elements = 2460)

Table 8
The former six modes (not including the first rigid body mode) for a confocal elliptical m

Method Eigenmode

Mode 2 Mode 3

Present method

BEM (UT) (No. elements = 100)

ABAQUS (No. elements = 2460)
the true eigenvalue but also the spurious eigenvalue. To suppress
the spurious eigenvalues, the CHIEF method, the SVD updating
technique and the Burton & Miller approach are used, respectively.
Fig. 5(a) show the minimum singular value versus k for the fixed–
fixed boundary condition by using the three approaches. Spurious
eigenvalues do not appear in Fig. 5(a), but it is amazing that the
zero spurious eigenvalue still exists. Nevertheless, it is reasonable
since the zero eigenvalue is simultaneously imbedded in the ik[U]
and [L] matrices. In order to suppress the zero spurious eigenvalue,
we modify the combination of Burton & Miller approach in Eq. (65)
as shown below:

½U� � i
k
½L�

� �
ftg ¼ ½T� � i

k
½M�

� �
uf g: ð66Þ
dary condition.

Mode 3 Mode 4 Mode 5

embrane subject to the free–free boundary condition.

Mode 4 Mode 5 Mode 6
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Fig. 7. Detection of possible eigenvalues for the case 2 by plotting the minimum singular value r1 versus k in the BIEM and BEM.

Table 9
The former ten possible eigenvalues of a confocal elliptical membrane subject to the free–free boundary condition by using the singular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method (No. nodes = 42) 2.331 2.347 2.749 2.852 3.075 3.357 3.435 (3.777) 3.884 3.902
BEM (No. elements = 100) 2.335 2.351 2.753 2.857 3.080 3.362 3.440 (3.782) 3.889 3.908
ABAQUS (No. elements = 2460) 2.331 2.347 2.749 2.852 3.075 3.357 3.435 – 3.884 3.902

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the mth-order (even or odd) modified Mathieu functions of the first kind,
(Jem(q,n1) or Jom(q,n1)).

Table 10
The former ten possible eigenvalues of a confocal elliptical membrane subject to the free–free boundary condition by using the herpersingular BIEM/BEM and FEM.

Method Eigenvalue

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Present method (No. nodes = 42) (0) (1.874) 2.331 2.347 2.749 2.852 3.075 3.357 (3.419) 3.435
BEM (No. elements = 100) (0.230) (1.881) 2.343 2.343 2.777 2.850 3.025 3.356 (3.432) 3.492
ABAQUS (No. elements = 2460) – – 2.331 2.347 2.749 2.852 3.075 3.357 – 3.435

Note: The data inside the parentheses denote the spurious eigenvalue, which relates to the zeros of the derivative for mth-order (even or odd) modified Mathieu functions of
the first kind, ðJe0mðq; n1Þ or Jo0mðq; n1ÞÞ.
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Then, the result is shown in Fig. 5(a) and spurious eigenvalue of
zero is not found. In the same way, the plot of minimum singular
value versus k for the free–free boundary condition is shown in
Fig. 5(b). Besides, the spurious eigenvalues can be extracted out
by using the SVD updating documents technique as shown in
Fig. 6. Although true eigenvalues can be detected by using the
CHIEF method and the Burton & Miller approach, respectively,
spurious eigenvalues cannot. Nevertheless, true and spurious
eigenvalues can be extracted out by using the SVD updating terms
and documents, respectively. Tables 7 and 8 show the former five
eigenmodes of the fixed–fixed and free–free boundary conditions,
respectively. The first mode is symmetric with respect to the x-
axis, while the second mode is antisymmetric with respect to
the x-axis. The eigenvalue of the symmetric mode is corresponding
to the zeros of true eigenequation Eq. (45). On the contrary, the
eigenvalue of the antisymmetric mode is corresponding to the
zeros of Eq. (46).
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6.2. A circular membrane containing an elliptical hole

In the second case, a circular membrane containing an elliptical
hole is considered. The radius of the outer boundary is r0 = 2 while
the geometric parameter of inner elliptical boundary is the same
with that of the confocal elliptical membrane of case 1. The
fixed–fixed boundary condition is considered. Based on the adap-
tive observer system and vector decomposition technique [21], this
problem can be solved without any difficulty by using the BIEM.
Figs. 7(a) and (b) show the minimum singular value versus k by
using the singular formulation and hypersingular formulation,
respectively. The former ten possible eigenvalues are listed in Ta-
bles 9 and 10 and are compared with those of the FEM. Good agree-
ment is made. It is interesting that the spurious eigenvalues are
equal to those of the confocal case since the inner boundary is
the same. These results support the finding that the spurious
eigenvalues depend on the geometry of inner boundary and the
2 2.5 3 3.5 4
k

Eq. (59))
Eq. (66))

BIEM

2 2.5 3 3.5 4
k
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 (Eq. (66))

S: Spurious eigenvalue

 BEM
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3.777 
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lue r1 versus k through (1) CHIEF method (0.2, 0.2), (2) SVD updating technique and



Table 11
The former five modes for a circular membrane containing an elliptical hole subject to the fixed–fixed boundary condition.

Method Eigenmode

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Present method (No. nodes = 42)

BEM (UT) (No. elements = 100)

ABAQUS (No. elements = 2460)
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approach used once again. We also employ three methods to ex-
tract out the true eigenvalues as shown in Fig. 8. In addition, the
former five eigenmodes are shown in Table 11.

7. Conclusions

In this paper, analytical derivation of the true and spurious
eigenvalues for confocal elliptical membrane has been made suc-
cessfully by applying the BIEM in conjunction with the separable
kernels and eigenfunction expansion. Numerical results using the
BEM and FEM also acquired, respectively, and match well with
those predicted theoretically in terms of the true and spurious
eigenvalues.

By the analytical derivation, it is revealed that spurious eigenso-
lutions depend on the geometry of inner boundary and the ap-
proach used. This finding is the same with those corresponding
to the annular cases. Also, the finding is further confirmed numer-
ically through illustrative examples of a confocal elliptical mem-
brane and a circular membrane containing an elliptical hole.

Besides, we employed the CHIEF method, the SVD updating
technique and the Burton & Miller approach to suppress the
appearance of spurious eigenvalues for the multiply-connected
problems. It is found that the CHIEF method is more efficient than
the SVD updating technique and the Burton & Miller approach due
to no hypersingularities involved and less computational effort.
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