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Abstract

In this report, the applications of the method of fundamental
solutions to exterior acoustic radiation and scattering problems are
proposed. By using the two-point function of fundamental solution,
the coefficients of influence matrices are easily determined. It is
found that this method also results in the irregular frequency as well
as the boundary element method do. The position of irregular
frequency depends on the source location. To avoid this numerical
instability, the Burton & Miller technique is employed to dea with
the problem. Based on the circulant properties and degenerate
kernels, an analytical scheme in the discrete system of a cylinder is
achieved to demonstrate the existence of irregular frequency. Two
numerical examples of nonuniform radiation and scattering
problems of acircular cylinder are examined and are compared with
the results by using BEM.

Keywords: Fundamental solutions method; Two-point function;
Irregular frequency; Circulant; Degenerate kernels

1, Introduction

In numerical methods, mesh generation of a complicated geometry
is aways time consuming in the stage of mode creation for
engineers in dealing with the engineering problems by employing
the finite difference method (FDM), finite element method (FEM)
and boundary element method (BEM).

In the last decade, researchers have paid attention to the meshless

method without employing the concept of element. Theinitial idea
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of meshless method dates back to the smooth particle
hydrodynamics (SPH) method for modeling astrophysica
phenomena (Gingold and Maraghan, 1977). The method of
fundamental solutions (Kondapalli et al., 1992; Poullikkas et al.,
2002) is a technique for the numerical solution of certain elliptic
boundary value problems. MFS may be viewed as an indirect
boundary element method with a concentrated source instead of
distribution. Like the boundary element method, it is applicable
when a fundamental solution of the differential equation in question
known. The basic ideal is to approximate the solution by forming a
linear combination of fundamental solutions with sources located
outside the problem domain. The coefficients of the linear
combination are determined so that the approximate solution
satisfies the problem boundary conditions. Kondapalli et al. (1992)
applied the MFS to acoustic scattering in fluids and solids. One can
consult the review paper of the MFS approach by Fairweather and
Karageorghis (1998). One of the problems frequently addressed in
BEM is the problem of irregular (fictitious) frequencies for exterior
acoustics. Kondapalli (1992) pointed out that the difficulty of
fictitious frequency appearing in the BEM is not present in the MFS.
The reason was explained that a discrete set of source points does
not define an interna surface uniquely, as quoted from Fairweather
et al., 2003. In this report, we will examine this point for the
fictitious frequency phenomenon in the MFS. The fictitious
frequencies do not represent any kind of physical resonance but are
due to the numerica method, which has not a unique solution at
some egenfrequencies for a corresponding interior problem.
Following the retracted BEM formulation (Hwang and Chang,
1991), it was found that the position of irregular frequency depends
on the source location. The MFS and the retracted BEM can be seen
as the similar indirect method instead of the difference of lump
source and distributed source. Although the fictitious frequencies
can be predicted theoretically (Chen, 1998; Chen and Kuo, 2000),
we may not find the positions of numerica instability in the real
computation for some cases.

This research will focus on the study of the occurring mechanism
of fictitious-frequency for exterior acoustics by using the MFS. An
analytical study of the fictitious frequency in a discrete system for a
circular cylinder is conducted by using the degenerate kernel and
circulants. Three numerical examples of uniform radiation,
nonuniform radiation and scattering problems of a circular cylinder
will aso be examined and will be compared with the analytica
solution and the results by using BEM.

2. The MFS formulation for Helmholtz



equation

The boundary value problem one wish to solve can be stated as
follows: The acoustic pressure u(x) must satisfy the Helmholtz
equation,

(V2 +k)u(x)=0,xeD, (1)

inwhich k = @/ c isthe wave number and @ is the angular
frequency and D is the domain of interest. By using the MFS, the
acoustic field and flux can be described by linear combinations of
fundamental solutions:
Single-layer potential approach

2N

u(x) = Y U(s, )T Gs,), e

() =S Lls, 9T (s,), ®
Doublelayer%otentia] approach

u(@) = ST, 00, )

t(x) = ZZLV:M(SJ ,X)Q(s ), ®)

where x and s are the collocation and source points, respectively, as

shown in Fig.1, L(s,x) = oU (s, x) ,
on,
2 .
(s, x) = 2262 a1, x) :M’n is the normal vector, ()
on, On On,

and Q(sj) are the generalized unknowns for single and double

densities, respectively, at § o 2N is the number of collocation

points and U(s, x) is the fundamental solution. The fundamental
solution setisfies

VU (s,x) + k*u(s, x) = 276 (x — 5) , (6)
where ¢ istheDirac deltafunction. The U kernd is,

U(s,x) = % HY (kr), @)

in which r=|sx| is the distance between the source and

collocation points; z® denotes the first kind of the Oth order

Hankel functions.
We consider an infinite circular cylinder with the Dirichlet boundary
conditions

u(x) =u, x € B, (€)
where B is the boundary. By matching the boundary conditions for x
on the 2N boundary pointsinto Eq.(2) we have

{u} =[UNT} ©)
where {T'} isthe vectors of undetermined coefficients.
Eq.(9) can be rearranged to

{1} =[LKI} (11)

{r} =[U]{u} (10)
We obtain the unknown boundary density {#} asfollow:

{1} =[L1[U] {u} = [SD}{u} 12

By substituting Eq.(10) into Eq.(2), we obtained the field pressure
u(x) =< w>[U]{u}, (13)
where <w> is the influence row vector of field point obtained by
using the U(s,x) kernel.

2 Analytical study of theirregular
frequency for thecircular radiator using
circulants

For the circular case, we can express x = (p,¢) and s =(R,0)in
terms of polar coordinate. The U kernel can be expressed in terms of

degenerate kernels as shown below:

VRO = 3 T PR, b oosn0- k> p O

U(s,x) = =
U*(R.G;p.¢) = D HP(kp)J, (kR)COSN(E - §).R < p

n=—0

where the superscripts “i” and “e” denote the interior (R > p) and
exterior domains (R < p), respectively. Since the rotation
symmetry is preserved for acircular boundary, the four influence
meatrices are denoted by [U], [L], [T] and [M] of the circulants.

Based on the circulant theory, the eigenvalues for the four influence
matrices are found as follows:

2, = —in’ pH® (kp)J,(kR),l = 0£142.--+ (N -1, N (15)
1, =—iz?pH® (kp)J, (kR),I = 04142---+ (N -1),N (16)
v, = =iz’ pH® (kp)J, (kR),! = 021,42+ (N —1),N (17)

Kk, = —in? pH P (kp)J, (kR),[ = 0£142---+ (N —1), N (18)

where 2, y,vand x aretheeigenvaluesof [U], [L], [T] and [M]

matriX, respectively. The determinants for the four matrices are
obtained by multiplying al the eigenvalues.

4. Derivation of fictitious frequency by using
the single-layer potential approach

For the Dirichlet problem, we have

o 0 - 0 0

0 o . 0 0 (19)
[SD]=| : S : Clot

0 0 oy O

0 0 - 0 oP

where the superscript “SD” denotes by using the single-layer
potential approach for the Dirichlet problem and

sD _ Hzl(l) (ka)J, (kR)

" HY(ka)J (kR)
where a istheradius of the circular cylinder. According to Egs.(19)
and (20), we have

det|SD| = det|@|o§™ (00" -0 3,) o detld |

/=021 £(N-1),N (20)

(21)

SD \2 __SD

SD__sD
*Oy1) Oy

= O'éSD) (0,70,
SINCe let|p| = det| > = 1
Based on the Eq.(21), the numerical instability of zero divided by
zero occurs at the denominator where k satisfies
H® (ka)J,(kR) = 0. = 0+1+2,--- *N -1, N (22)
Since the term of H® (ka) is never zero for any value of &, the k
value satisfying Eq.(22), implies

J,(ka)=0.. (23)
For the Neumann problem, we have
(6 0 - 0 0]
0 ofN 0 0
[SN]=@| & & i i o @)
0 o - a_s(NN_l) 0
0 o - 0 Uf,N |

where the sszerscri pt “SN” denotes by using the single-layer
potential approach for the Neumann problem and

SN _ H1(1) (ka)J1 (kR)

oN =L =0+ +(N-1,N (25)
" H O (ka)J (KR) V-1

According to Egs.(24) and (25), we have

defsN] = detfolos” (0" o) ol a0 )

SN {_SN __SN SN \2 __SN
=0, (0, 05 oyy) oy



Based on the Eq.(26), the numerical instability of zero divided by
zero occurs at the denominator where k satisfies

H " (ka)J,(kR) = 0. = 04+1+2,--- *N -1, N 27
Since the term of H® (ka) is never zero for any vaue of k, the k
value satisfying Eq.(27), implies

J,(ka)=0. (28)

5. Burton & Miller method

In the exterior acoustics of Helmholtz equation by using dual BEM,
the Burton & Miller utilized the product of hypersingular equation
with an imaginary constant to the singular equation to deal with
fictitious frequency which is the non-uniqueness solution problem.
We will extend this concept to MFS approach.

() = T (U, x) 4 Tls,3)p(s) 29

() = T U, 5)+ 2 T(s,x))e(s,) (30)

where @ isthemixed potential.

6. Numerical examples

Case 1: Nonuniform radiation from an infinite circular cylinder

This problem was chosen because the exact solution is known
(Harari {\it et a.}, 1998). The boundary condition is shown in Fig.3.
In this example we computed the nonuniform radiation from an
infinite circular cylinder. The Neumann boundary condition is
applied to the cylinder surface.

The portion (—g<@<q) is assigned a unit vaue, while the

remaining portion is assigned a homogeneous value. The analytical
solution to this cylinder problem with aradius a=1.0 m is given by
2.&, —sin(na)H® (kp) (31)

u(p.d) = ;; knH® (ka)

where the symbol “™ denotes that the first term (»=0) is halved. We
sdectg = 7/9, ka=1. Figure 4 show the contour plots for the rea
part of the numerical solutions. Sixty-four nodes are adopted in the
MFSand =57/32 for this case. The source points are located at
R=0.9 m. The positions where the irregular values occur can be
found in Fig.5 for the solution u(a,0;k) versus k. It is found that by
using the UL formulation the irregular values occur at the positions
of T which is the mth zero of J, (kR) - The fictitious frequencies

cos(ng), p>a,0< ¢ <21

occurred at the position are described in Eq.(28). By using the TM
formulation the irregular vaues occur at the positions of J; (kR),

which is the nth zero of J’; (kR) - The results of the MFS, the

Burton & Miller approach and analytica solution are shown in
Fig.5.

Case 2: Plane wave scattering for a rigid infinite circular cylinder
(Neumann boundary condition)

In order to check the validity of the program for the scattering
problem, example 2 is considered (Harari et al., 1997). The incident
wave is a plane wave and the scatter is arigid cylinder, as shown in
Fig.6. Sixty nodes are adopted for this case. The analytica solution
for the scattering field is

—Jolka) ey & oS, (ka)
u(p,0) = Hgl‘i(ka) H (kp)—ZZ:;l H (ka)

Figure 7 shows the contour plot for the red-part solutionka = 4r .

(32)

H® (kp) cos(n6)

The positions where the irregular values occur can be found in Fig.8
for the solution u(a,0,k) versus k. Sixty-four nodes are adopted in
the MFS. The source points are located at R=0.9 m. It is found that
by using the UL formulation the irregular values also occur at the
zeros of J . The results among the MFS, analytical solution and

the Burton & Miller solution agree well as shown in Fig.8.

7, Conclusions

In this research, the mechanism why fictitious frequencies occur in
the MFS has been examined by considering the radiation and
scattering problems of a cylinder. Based on the circulant properties
and degenerate kernels, an anaytical scheme in discrete system of a
cylinder was achieved. The occurrence of fictitious frequency only
depends on the formulation instead of the specified boundary
condition. The numerical results from this study indicated that the
irregular frequency also appears at the eigenvalue of interior
problem where the boundary is connected by the source locations
instead of the real boundary in the direct BEM. In acircular cylinder
case, the position of irregular frequency depends on the source
location R.The Burton & Miller technique was demonstrated
successfully to filter out the fictitious frequency anaytically and
numerically.
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Fig.1 Thelocated position of source and collocation Fig.2 The radiation problem (Dirichlet type) for a cylinder.
points and the definitionsof p, @, R and r..

Fig.3 The nonuniform radiation problem Fig.6 The problem of aplane wave scattered

(Neumann type) for acylinder. by arigid infinite circular cylinder

Fig.4 The numerical solution for the nonuniform Fig.7 The contour plot for the real-part numerical
solution for a plane wave scattered by an infinite

- _ T
rediation problem (ka=1, 4 =3)' circular cylinder (ka = 4r).
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Fig.5 The u(a,0;k) versusk usingthe MFSfor the

nonuniform radiation by a circular cylinder. 3



Fig.8 The u(a,0;k) versusk using the MFSfor
plane wavescattered by an infinite circular cylinde



