International Journal of Offshore and Polar Engineering (ISSN 1053-5381)
Copyright © by The International Society of Offshore and Polar Engineers
Vol. 21, No. 1, March 2011, pp. 13-21

http://www.isope.org/publications

Analysis of Water Wave Problems Containing Single and Multiple
Cylinders by Using Degenerate Kernel Method

Jeng-Tzong Chen

Department of Harbor and River Engineering and Department of Mechanical and Mechatronic Engineering,

National Taiwan Ocean University Keelung, Taiwan, China

Chien-Feng Wu and Jia-Wei Lee
Department of Harbor and River Engineering, National Taiwan Ocean University
Keelung, Taiwan, China

Yu-Chih Hsiao
Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University
Keelung, Taiwan, China

In this paper, water wave problems containing circular cylinders are solved by employing the null-field boundary integral
equation in conjunction with degenerate kernels and the Fourier series. The fundamental solution is expanded to the degen-
erate kernel in the polar coordinates for problems containing circular boundaries. The boundary densities are expanded by
using the natural base of the Fourier series. By this means, the field point can be located exactly on the real boundary free
of calculating Cauchy and Hadamard principal values. Since errors attribute from the number of terms of the boundary
densities, the present method can be seen as a semi-analytical approach. Both single and multiple cylinders are considered.
Regarding the case of a single cylinder, our results are compared with those of the boundary element method (BEM) in the
literature. The present method achieves higher accuracy and faster convergence than BEM. The near-trapped mode phe-
nomena are observed. The effect of disorder of circular cylinders is also investigated in this paper. Finally, the free-surface

elevation of the water wave containing a circular cylinder is animated by using the Mathematica software.

INTRODUCTION

Understanding the multiple scattering of water waves by arrays
of cylinders is a problem of long-standing interest. Water wave
problems containing circular cylinders have also attracted the
attention of researchers from many countries with long coast lines,
such as Taiwan, the USA and Japan. Over the past 40 years,
investigators have presented several numerical methods, including
the finite difference method, finite element method and boundary
element method (BEM), to solve several problems in ocean engi-
neering. In this field, water wave forces are of considerable impor-
tance for structures for structural safety, so many researchers have
undertaken some related studies in different ways of theoretical,
experimental and numerical work. MacCamy and Fuchs (1954)
derived the exact solution of the horizontal wave force on a sin-
gle vertical circular cylinder. The experiment data were tested by
Chakrabarti and Tam (1975). Au and Brebbia (1983) employed
the BEM to solve the water wave problems containing a circular
cylinder. Later, Zhu and Moule (1996) used a various discretiza-
tion mesh to obtain better results than those of Au and Brebbia
(1983). Linton and Evans (1990) studied the interaction of water
waves with arrays of vertical circular cylinders by using the mul-
tipole expansion approach.

Trapped and near-trapped modes may occur for problems con-
taining infinite and truncated periodical patterns of arrays of cylin-
ders, respectively, as shown in Fig. 1. Fig. la shows a trapped
mode is associated with the existence of a real eigenvalue of the
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governing operator. Fig. 1b shows a near-trapped mode is associ-
ated with a singularity of the analytic extension of the governing
operator close to the real axis. These physical phenomena appear
in many fields, such as engineering mathematics, hydraulic engi-
neering, earthquake engineering, ocean engineering and physics.
The trap phenomena are described item by item.

* Engineering mathematics. When a spring system is sub-
jected to an incident wave, the spring may have a near-trapped
mode under a certain arrangement of spring constant and distance
between 2 springs (Chen et al., 2009a).

* Hydraulic engineering. There exists a stepped ridge and that
water is unable to propagate from a shallow area to a deep area
(Mei, 1983).

» Earthquake engineering. Here, the surface wave may seri-
ously result in damage for structures. For a thin-layer inclusion in
a half-space medium, a trapped wave may occur—for example,
the Love wave or the Stonely wave (Graff, 1975).

(b)

Fig. 1 (a) Trapped mode of an infinite periodical array of cylin-
ders; (b) near-trapped mode of a truncated periodical array of
cylinders
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e Quantum physics. The trapped mode occurs in physics as
well as engineering. The bound state in a square-well potential in
quantum mechanics is another case of trapped modes (Postnova
and Craster, 2008).

¢ Ocean engineering (our focus). The construction of an off-
shore platform is subjected to wave loads year-round. Duclos and
Clément (2004) proposed a simplified model of linear theory to
simulate the interaction between cylinders subjected to the inci-
dent wave. In this analysis, a specific distance between cylinders
in conjunction with a certain wave number may cause trapped and
near-trapped modes. This topic is our main concern in this paper.

A near-trapped mode is relative to a scattering frequency.
A scattering frequency is a peak of the analytic continuation of the
scattering operator. Tabaei and Mei (2009) coined these scattering
resonances. Evans and Porter (1999) used the Linton and Evans
(1990) method to discover trapping and near-trapping phenom-
ena for the case of bottom-mounted cylinders. Meylan and Tay-
lor (2009) studied the near-trapped mode in the complex plane of
water frequency. The near-trapped modes in physics were numer-
ically observed in a consistent way by other works (Evans and
Porter, 1999).

Here, we study the near-trapped mode by using the null-field
boundary integral equation. This approach has been successfully
employed to solve water wave scattering problems across an array
of circular cylinders (e.g., Chen et al., 2009b; Wu et al., 2009;
Chen et al.,, 2007a; Chen et al., 2009c). To fully utilize the
geometry of the circular boundary, not only the Fourier series
for boundary densities but also the degenerate kernels for funda-
mental solutions are incorporated into the present method. Sev-
eral advantages over the conventional BEM are achieved, such
as mesh-free generation, well-posed model, principal-value free,
elimination of boundary-layer effect and exponential convergence.

PROBLEM STATEMENT AND INTEGRAL
FORMULATION

Problem Statement

Now we assume N vertical cylinders mounted at z = —h
upward to the free surface as shown in Fig. 2. The governing
equation of the water wave problem is the Laplace equation:
V:®(x,y,2,1)=0, (x,y,z)eD (1)
where D is the domain of interest; V2, the Laplacian opera-
tor; d(x,y, z, 1), the velocity potential where (x, y) locate in the
plane; and z, the vertical direction, which satisfies the boundary
conditions of the seabed. The linearized kinematic condition on
the bottom is:

(%) 0 @

O

Fig. 2 Problem statement of water waves with array of vertical
cylinders

and the linearized condition on the free surface is:

> 90
(—‘icp + —) =0 3)
8 8z z=0

where g is the acceleration due to gravity. The velocity potential
must also satisfy the kinematic conditions on the wetted surface
of all bodies:

0P
— =0, —h=<z=<0 4)
an
where n stands for the normal vector of any body with respect to
its local circular coordinate system.

Based on the linearized water wave theory, we can use the
technique of separation variables to express the velocity potential
in terms of space and time:

®(x,y,z, 1) =u(x,y) f(z)e -
where:
f(2) = —igA cosh(k(z+ h)) o

1) cosh(kh)

in which h is the water depth, k represents the wave number,
w is the angular frequency, and A denotes the amplitude of the
incident wave.

In addition, k and w satisfy the dispersion relationship as
follows:

ktanh(kh) = %2 @)

The free-surface elevation of H(x, y, t) can be defined by:

H(x,y,t)=n(x,y)e (8)
where:
n(x, y) = Au(x,y) )

The incident plane wave potential is:

ul(x’ y) — eik(xcos(?,v,lﬂrysin Oine) = eikrcos(e—(?m() (10)

where 6;,. is the incident angle.
Substituting Eq. 5 into Eq. 1, we can simplify to the Helmholtz
equation:

(V2 +E)u(x,y) =0, (x,y)eD. (11)

Rigid cylinders yield the Neumann boundary condition:

a“(;;’ Y _0, (x.y)eB (12)

where B is the boundary of cylinders.
The dynamic pressure can be obtained by:

o cosh(k(z+ h)) e
pz_prZPngT(kh)u(x’y)e ! (13)
where p, is the density of fluid. The 2 components of the force
X/ on the jth cylinder are given by integrating the pressure over
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the circular boundary:

cos ;

. prgAa;
N —=_J= J J
Xih= k sin§;

tanh(kh) - [0277 u(x, y) { } o,  (14)

where a; denotes the radius of the jth cylinder.

Dual Boundary Integral Equations: Conventional Version

The integral equation for the domain point can be derived from
Green’s third identity (Chen et al., 2009b):

2u(x) = /B T(s, x)u(s) dB(s)

—/BU(S, x)1(s) dB(s), xe€D, (15)
2mi(x) = [ M(s.x)u(s) dB(s)

—/BL(S, xX)1(s)dB(s), xeD (16)

where s and x are the source and field points, respectively, and
t(s) = du(s)/dn, and n, denote the unit outward normal vectors at
source point s. Egs. 15 and 16 are dual BIEM formulations. How-
ever, Egs. 2~12 are some equations of the mathematical model.
Instead of using the PDE of Eq. 11, we solve the problem by
using integral equations of Eqgs. 15 and 16. The kernel function,
U(s,x) = —(7Ti/2)H(§1)(kr), is the fundamental solution which
satisfies:

V2U(s,x) + k*U(s,x) =2m8(x —s) (17)

where 6(x — s) denotes the Dirac-delta function; H,,(l)(kr) =
J,(kr) +iY,(kr) is the n-th order Hankel function of the first
kind; J,, the n-th order Bessel function of the first kind; Y,,, the
n-th order Bessel function of the second kind; r = |x —s| and
i> = —1. The other kernel functions, 7 (s, x), L(s, x), and M (s, x),

are defined by:

T(s, x) = % (18)
L(s,x)= % (19)
_*U(s,x)

where n, denote the unit outward normal vectors at the field
point x.
By moving the field point to the boundary, Eqgs. 15 and 16
reduce to:
Tu(x) = c.P.V.f T(s, x)u(s) dB(s)
B
- R.P.v.f U(s,x)t(s) dB(s), xeB, @1)
B
7t(x) = H.P.V. / M(s, X)u(s) dB(s)
B
- C.P.V./ L(s,x)t(s)dB(s), xeB 22)
B
where R.P.V., C.P.V. and H.P.V. denote the Riemann princi-

pal value (Riemann sum), Cauchy principal value and Hadamard
principal value (or Hadamard finite part), respectively. Once the

field point x locates outside the domain (x € D¢), we obtain the
dual null-field integral equations:

0=/BT(S, xX)u(s) dB(s)—/BU(s,x)t(s) dB(s), xeD‘, (23)
o=/M(s, xX)u(s) dB(s)—/ L(s,x)1(s) dB(s), xeD¢ (24)

where D¢ is the complementary domain. Eqgs. 15, 16, 23 and 24
are conventional formulations where the point can not be located
on the real boundary. Singularity occurs and the concept of princi-
pal values is required once Eqgs. 21 and 22 are considered. The flux
t(s) is the directional derivative of u(s) along the outer normal
direction at s. For the interior point, 7(x) is artificially defined. For
example, #(x) = du(s)/dx,, if n, = (1,0) and #(x) = dJu(x)/dx,,
if n, = (0, 1) where (x,, x,) is the coordinate of the field point x.

Dual Boundary Integral Equations: Present Version

Based on the dual boundary integral formulation of the domain
point, we have:

2mu() = | T(s.0)u(s) dB(s)

—/B U(s,x)1(s)dB(s), xeDUB, (25)
2mi(x) = [ M(s.x)u(s) dB(s)

—/BL(S, x)1(s) dB(s), xeDUB. (26)

Eqgs. 25 and 26 are not the same as the conventional formulation
since they are valid not only for the points in the domain D but
also for the boundary points if the kernels are properly expressed
as the interior degenerate kernels. The set of x in Egs. 25 and 26 is
closed since x € DU B. The flux #(s) is the directional derivative
of u(s) along the outer normal direction at s. Eqs. 25 and 26
are termed singular and hypersingular boundary integral equations
(BIE), respectively.

Null-Field Integral Formulation in Conjunction with
Degenerate Kernel and Fourier Series

By collocating x outside the domain (x € D¢, complementary
domain), we obtain the null-field integral equations:

0= f T (s, X)u(s) dB(s)
B

—/ U(s,x)1(s) dB(s), xeD°UB, @7)
B

oz/ M(s, x)u(s) dB(s)
B
—f L(s.x)t(s)dB(s), xeDUB. 8)
B

The collocation point x can locate on the outside of the domain
as well as B if kernels are substituted into proper exterior degener-
ate kernels. A closed-form fundamental solution can be described
by different expressions of degenerate kernels for interior and
exterior cases; the BIE for the domain point of Egs. 25 and 26 and
null-field BIE of Egs. 27 and 28 can include the boundary point.
In the real implementation, the null-field point can be located on
the real boundary; the degenerate kernel is employed to describe
the closed-form fundamental solution in each side. The above-
mentioned 4 kernels U, T, L and M are not the same, but have
to expand to 2 kinds as shown in Eqs. 29~32. By using the polar
coordinates, we can express X = (p, ¢) and s = (R, 6). In view
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of the degenerate kernels, the 4 kernels U, T, L and M can be
expressed in terms of the degenerate kernel as shown here:

p— / M
U'(s, x) = % S e, 0, (kp)HO (kR) cos(m (6 — ),
m=0
R>p,
(29)
—mi M
UE(s,x) = — > &, H (kp)J,, (kR) cos(m(0 — ¢)),
m=0
R <p,
/ —mki M (1)
T/(5.%) = 0 3 6,,J,, (kp) H" (kR) cos(m(68 — ).
m=0
R > p,
(30)
£ —aki M ) ,
TE(s.%) = 2= 3 &, HY)) (kp)J;, (k) cos(m(8 — $)).
m=0
R <p,
J —aki M , )
Li(s,x)= > &ndy(kp)H, (kR) cos(m(6 — b)),
m=0
R>p,
@31
£ —mki X (1)
L, %)= —— >_ e, H,," (kp)J,, (kR) cos(m(6 — ¢)).
m=0
R <p,
I —mk*i & / (1)
M (5,30 = =2 3 0, (kp) D (kR) cos(m(0 — §)),
m=0
R=>p,
(32)
E —mk*i I (1) ,
M (s, %) = 3 e, H (kp)Jj,(kR) cos(m(6 — ).
m=0
R<p
where g, is the Neumann factor:
1, m=0,
£, = (33)

Eqs. 29~32 are called degenerate kernels (or separable kernels)
which can be expanded to finite (M) sums of products of func-
tions of the field point x alone and functions of the source point s
alone. If we consider the finite sum of series, the kernel is finite
rank. Mathematically speaking, the theory of boundary integral
equations with the degenerate kernel is nothing but linear alge-
bra. Since the potentials that resulted from 7'(s,x) and L(s, X)
are discontinuous across the boundary, the potentials are differ-
ent when 7'(s,x) and L(s,x) for R— p* and R — p~. This is
why the degenerate kernels of 7'(s, x) and L(s, x) do not include
R = p in the expression. The degenerate kernels simply serve as
the means with which to evaluate regular integrals analytically
and take the limits analytically. The reason is that Egs. 25 and 27
yield the same algebraic equation when the limit is taken from
the inside or from the outside of the region. Both limits repre-
sent the same algebraic equation, that is, an approximate coun-
terpart of the boundary integral equation, which in the case of a
smooth boundary has term 7u(x) or m¢(x) on the left-hand side
rather than 27u(x) or 27¢(x) for the domain point, or O for the
point outside the domain. Further, the limiting case to the bound-
ary is also addressed. The Wronskian property of Bessel function

J,, and Y, can capture continuous and jump behavior across the
boundary:

W(J,.(kR), Y, (kR)) =Y, (kR)J,,(kR) — Y, (kR).J,, (kR)

_ % (34)
as:
/0 7 (T (s.%) — TE (s, x)) cos(mB) R db
—2mcos(md), x€B, (35)
| 7 (7 (s, %) — TE(s, X)) sin(m6) R d6
—2msin(md), xe€B. (36)

After employing Eqs. 35 and 36, Eqgs. 25 and 27 yield the same
linear algebraic equation when x is located exactly on the bound-
ary from the domain or the complementing domain. A proof for
the Laplace and Helmholtz cases can be found in Chen et al.
(2006) and Chen et al. (2007b), respectively.

In order to fully utilize the geometry of the circular boundary,
the boundary potential u(s) and its normal flux 7(s) can be simu-
lated by using the Fourier series. Thus, we obtain:

M

u(s) =ay+ Y _(a,cosnb + b, sinnb), (37)
n=l1
M

1(s) = po + Y_(p, cos nf + g, sinnf) (38)

n=1

where ay, a,, b,, py, p, and g, are the Fourier coefficients and
0 is the polar angle. Eqs. 27 and 28 can be easily calculated by
employing the orthogonal property of the Fourier series. In the
real computation, only the finite 2M + 1 terms are used in the
summation of Egs. 37 and 38.

Adaptive Observer System

The boundary integral equations are frame indifferent, so the
rule of objectivity is obeyed. The adaptive observer system is cho-
sen to fully employ the property of degenerate kernels. Fig. 3
shows the boundary integration for the circular boundaries. It is
worth noting that the origin of the observer system can be adap-
tively located on the center of the corresponding circle under
integration to fully utilize the circular boundary’s geometry. The
dummy variable in the integration on the circular boundary is
just the angle () instead of the radial coordinate (R). By using
the adaptive system, all the boundary integrals can be determined
analytically free of principal value.

Fig. 3 Adaptive observer system



International Journal of Offshore and Polar Engineering, Vol. 21, No. 1, March 2011, pp. 13-21 17

Linear Algebraic Equation

In order to calculate the 2M + 1 unknown Fourier coefficients,
2M + 1 boundary points on each circular boundary need to be
collocated. By collocating the null-field point exactly on the kth
circular boundary for Eqs. 27 and 28 as shown in Fig. 3, we have:

ozzf T(s, x,)u(s) dB(s)
j=1"B;
N
-y / U(s, x,)t(s) dB(s), x,eDUB, (39)
j=1"Bj
N
O=Z/ M(s, x;)u(s) dB(s)

- %/ L(s.x,)t(s)dB(s), x,e€D°UB (40)
j=1"Bj

where N is the number of circular cylinders. Note that the path is
anticlockwise for the outer circle; otherwise, it is clockwise. For
the B; integral of the circular boundary, the kernels of U(s, x),
T(s,x), L(s,x) and M (s, x) are respectively expressed in terms of
degenerate kernels of Eqgs. 29 and 30 with respect to the observer
origin at the center of B;. The boundary densities of u(s) and
t(s) are substituted by using the Fourier series of Eqs. 37 and 338,
respectively. In the B; integration, we set the origin of the observer
system to collocate at the center c¢; of B; to fully utilize the degen-
erate kernel and Fourier series. By locating the null-field point on
the real boundary B, from outside the domain D¢ in numerical
implementation, a linear algebraic system is obtained:

[UI{t} = [T]{u} (41)
[L]{t} = [M]{u]}. (42)

For more details on how to derive the influence matrix of U, T,
L and M, readers can consult Chen et al., 2009b.

ILLUSTRATIVE EXAMPLES
Case 1: Water Wave Impinging on Circular Cylinder

In this case, we consider the water wave problem by a bottom-
mounted vertical rigid circular cylinder. MacCamy and Fuchs
(1954) studied this problem, and the exact solution of the hori-
zontal force on the cylinder is:

4p,gAtanhkh

- . (43)
kH" (ka)

The force is also obtained by using our degenerate-kernel
method:

1
F, = —pngaE tanh kh{Z’n'i], (ka) — WzkaHl(])(ka)Jl’(ka)

_ _ H,"(ka)J](ka) ]}

Although the formulae for the force derived by using our
approach look quite different (and awkward) from the literature in
Eq. 43, it can be proved to be equivalent by using the Wronskian
property of Bessel functions. Numerical results also support this
point.

Mesh 1 (Au and Brebbia, 1983)

F.l pgAh tanh (kh)/kh

Analytical solution

Tra. BEM 6 Constant elements

Tra. BEM 12 Constant elements

oOn

Tra. BEM 24 Constant elements

—|— Present method (M=1)

ka

Fig. 4 Horizontal force on single cylinder using Mesh 1 of BEM
and null-field BIEM

This problem has also been studied by Au and Brebbia (1983)
and Zhu and Moule (1996) by using the BEM of different dis-
cretization (Meshes 1 and 2) to match boundary geometry, as
shown in Figs. 4 and 5. These results are compared with the
present method as shown in Figs. 4 and 5. The nondimensional
total horizontal force, Fy/{p gAhtanh(kh)/kh}, is plotted ver-
sus ka. Good agreement is reached. The accuracy of the present
method is better than that of BEM.

The phase of horizontal force is also plotted and compared with
that of BEM (Au and Brebbia, 1983; Zhu and Moule, 1996) and
the analytical solution as shown in Fig. 6. A good agreement is
reached by using our approach.

Mesh 2 (Zhu and Moule, 1996)

F./ pgAh tanh (kh)/kh

Analytical solution
New BEM 6 Constant elements

New BEM 12 Constant elements

| >

New BEM 24 Constant elements

—|— Present method (M=1)

ka

Fig. 5 Horizontal force on single cylinder using Mesh 2 of BEM
and null-field BIEM
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100

6 Constant elements
12 Constant elements

24 Constant elements

+o0Op

Present method (M=1)

90 — —— Analytical solution
o
0O a

80 —

Phase (degree)

70 —

60

Fig. 6 Phase of horizontal force on single vertical cylinder

26 —
2.4 —
<~
= 22 —
S
<
c
‘KE =
<
<
2
\x 2 —
w
—E— Linear elements
8= —k Constant elements
+ Quadratic elements
+ Present method
1.6 T | T | T | T | T
4 8 12 16 20 24
NB, NF =2M+1

Fig. 7 Convergence curve of horizontal force for single cylimder

The convergence rate of the horizontal force was also studied
by Au and Brebbia (1983). Their results are also compared with
those of BEM, using constant, linear and quadratic boundary ele-
ments as shown in the convergence curve of Fig. 7. It is amazing
to find that the error obtained by using linear elements is larger

, o M
. s
. 2
10 s
os 75
‘ H ;
55
s s o5
B i o
7 55
65 4
2 s \ W
55 45
s : n
' ') r\ s 35
2
35 N
o N 25
s v -ﬂ r 2
A
15
E
I 1
o5 o5
2 o o
2 2
o s

(2) 4 cylinders (ka = 2.7657) " (b) 9 cylinders (ka=2.7131)

30 C
9

;;;;;;;;;;;;;

(c) 9 cylinders (ka = 2.8252)

aaaaaaaaaaaaa

(d) 9 cylinders (ka=2.7629)

Fig. 8 Water wave elevation on near-trapped mode

than that obtained by using constant elements (Au and Brebbia,
1983). The possible reason is that the horizontal force is obtained
by integrating the cos @ term, which is an even function. It is a
surprise that using only a few numbers of Fourier terms can obtain
better accuracy than using 24 boundary elements.

Table 1 shows the better accuracy of the present method over
the BEM. The incident angle is zero; the analytical solution of
the horizontal force is 4.309. In addition, the results of the present
method are more accurate than those of Zhu and Moule (1996),
using a better mesh (Mesh 2) than Au and Brebbia (Mesh 1).

Case 2: Water Wave Impinging on 4 Circular
Cylinders—Near-Trapped Mode

In Case 2, we consider the water wave structure problem by
4 and 9 bottom-mounted vertical rigid circular cylinders. The
arrangements of 4 and 9 cylinders have radius 1 and the cylinder
centers are spaced 3 apart (Fig. 8), and we focus on the physical
phenomena of the near-trapped mode. Meylan and Taylor (2009)
studied this problem in the complex plane of the water wave. Our
program can detect the near-trapped mode by the direct-searching
scheme for k in the real axis.

The scattering frequency of the near-trapped mode of the
present method is compared with the Meylan and Taylor (2009)
result. Fig. 9 shows the location of the scattering frequencies of
the near-trapped mode in the complex plane for the 2 arrange-
ments by Meylan and Taylor. Good agreement is reached. One

Traditional Present method
discretization discretization Ny =2M +1 (ka=1)
Elements Force Error (%) Force Error (%) Force Error (%)
N,=6 4.009 7 4.276 0.8 P=2 4.309 2.26 x 10715
N,=38 4.141 4 4.294 0.3 P=3 4.309 2.26 x 10713
N, =12 4.234 2 4.302 0.2 P=5 4.309 2.26 x 10715
N,=24 4.29 0.4 4.307 0.04 P=11 4.309 2.26 x 10715

N, = Number of BEM elements and Ny is the number of the present method’s Fourier series terms.

Table 1 Computed forces and relative errors versus number of elements
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° -
B
Ela
02 | | | |
0 1 2 3 4 5
Re(w)
(a) 4 cylinders
0 &
O
< Or + + + +
Forq + + + *t 0
+ 4+ + +
02 u | = —* | +O|
0 1 2 3 4 5
Re(w)
(b) 9 cylinders

Fig. 9 Locations of scattering frequencies of near-trapped mode
in complex plane; single roots, +; double roots, o; present
method = <>

real scattering frequency close to the real axis for the 4 cylinders
at 2.7641-0.0122i is found to be 2.7657 along the real axis by
using our method. Regarding 9 cylinders, 3 real scattering fre-
quencies close to the real axis for 9 cylinders at 2.7114-0.0041i
(single root), 2.8284-0.0102i (single root) and 2.7635-0.0086i
(double root) are found to be 2.7131, 2.8252 and 2.7629 on the
real axis by using our method. Also shown in Fig. 8 are the water
wave elevations on the near-trapped mode scattering frequencies;

Fig. 10 Sketch of 4 cylinders: (a) expansion of radius for
cylinder 1; (b) perturbation of center of cylinder 1

Normalized force

Ka
(a) Evans and Porter (1999)
a,/d=0.82
Cylinder 1
i el e S s, g Cylinder 2, 4
777777777777 Cylinder 3

Normalized force
N

ka

(b) Present method (M = 20)

Fig. 11 Resultant force on unsysmmetric pattern of 4 cylinders
against wave number, ka, (0,,. = 0°, a,/d =0.82, a;,/d = 0.8,
I1=2,3,4) when radius expanded

we can find that the real parts of the complex poles near the
real axis (Meylan and Taylor, 2009) are very close to ours. This
confirms that our formulation and program can predict the near-
trapped mode in the real axis free of the complicated computation
in the complex k plane.

Case 3: Water Wave Impinging on 4 Circular
Cylinders—Disorder of Periodical Pattern

In Case 3, the geometry and water wave condition are the same
as in Case 2 except for the disorder of cylinder 1 and the cylin-

Cylinder 1 Cylinder 3

a;/d a;/di=2,3,4 Normalized force = Normalized force

0.86 0.8 1.15 0.25
0.84 0.8 1.20 0.25
0.82 0.8 1.30 0.27
0.80 0.8 54.1 54.1
0.78 0.8 1.02 0.34
0.76 0.8 1.13 0.30
0.74 0.8 1.19 0.30

Table 2 Resultant force generated by changing radius to destroy
periodical setup (ka =4.08482)
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Cylinder 1 Cylinder 3

a,/d  a;/di=2,3,4 Normalized force Normalized force

0.86 0.8 1.15 0.29
0.84 0.8 1.20 0.28
0.82 0.8 1.27 0.27
0.80 0.8 54.1 54.1
0.78 0.8 1.12 0.27
0.76 0.8 1.17 0.26
0.74 0.8 1.16 0.26

Table 3 Resultant force generated by moving center of one
cylinder to destroy periodical setup (ka =4.08482)

inc ! +
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Fig. 12 Total field divided into 2 fields

der centers being spaced 2.5 apart. Two kinds of disorder can
destroy the periodical pattern. One is to expand the radius of the
first cylinder to be different from other cylinders, as shown in
Fig. 10a. The second is to perturb the center of the first cylin-
der, as in Fig. 10b. After comparing with the Evans and Porter
(1999) result, good agreement is reached, as shown in Figs. 11a, b.
The parameter study for the disorder on the near-trapped mode of
ka =4.08482 is examined. Tables 2 and 3 indicate that the peak

value for the near-trapped mode is reduced significantly due to
the perturbation of the radius and displacement of the center of
one cylinder, respectively.

ANIMATION OF FREE-SURFACE ELEVATION
FOR WATER WAVE PROBLEM CONTAINING A
CIRCULAR CYLINDER

We can divide the total field into 2 fields. One is the incident
field without any cylinder; the other is the radiation field with no
incident wave (Fig. 12). The incident wave potential can be eas-
ily obtained (Chen et al., 2009a). The radiation potential can be
derived by using the present method. After combining the poten-
tial’s 2 parts, we can obtain the total field. The total potential by
using this approach is as follows:

u() = Jo(kp) +2 3" ()", (k) cos(meb — ml,.)

m=1

i(z)ms H Y (kp)J,, (ka)

{ mwkai

(1)
H, ' (ka)J (ka
: ( J(ka) — 7(,(1)) n )> cos(me — mBim,)}. (45)
(ka)
m
Finally, the animation for the total free-surface elevation can

be constructed by using the Mathematica software as shown in
Fig. 13.

CONCLUSIONS

In this paper, we employed the null-field BIEM formulation
by using degenerate kernels for solving water wave scattering
problems containing circular cylinders. The null-field integral
equation and the Fourier series are in conjunction with adap-

(d) =09

Fig. 13 Animation of free-surface elevation for single circular cylinder

() t=12

=15
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tive observer systems and vector decomposition. This method is
a semi-analytical approach since only the truncation error in the
Fourier series terms is involved. The results compare well with the
results of Au and Brebbia (1983) and Zhu and Moule (1996) for
a single cylinder. The convergence rate of the present method is
faster than BEM’s. Physical phenomena of the near-trapped mode
for an array of cylinders were observed. The real wave numbers
of scattering resonance for near-trapped modes are also compared
with the complex poles of Meylan and Taylor (2009). Good agree-
ments are reached near the real axis. By perturbing the radius of
one cylinder (a,/d # 0.8) or moving the center of one cylinder to
destroy the periodical setup, the near-trapped mode can be sup-
pressed obviously. The free-surface elevation and resultant forces
on each cylinder have been presented to illustrate the effect of
disorder of the periodical layout on suppressing the near-trapped
modes. The results compare well with those of Evans and Porter
(1999). Finally, the animation for the water wave containing a
single cylinder using the Mathematica was given.
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