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Abstract

For MEMS combdrive design, the reduction of levitating force due to
electrostatic fields is very important, and an accurate electrostatic analysis is
essential and indispensable. For diverse MEMS combdrive designs, the
boundary element method (BEM) has become a better method than the
domain-type finite element method (FEM) because the BEM can provide a
complete solution in terms of boundary values only, with substantial saving
in modeling effort. Since dual BEM (DBEM) has some advantages over
conventional BEM for a singularity, the DBEM was used to simulate the
fringing of field around the edges of the fixed fingers and movable fingers of
MEMS combdrives for diverse design cases. A number of electrostatic
problems for typical MEMS combdrive designs were analyzed to check the
efficiency and validity of this new technique. It is found that the numerical
results computed by coarse mesh DBEM match the reference data from a
large refined mesh FEM very well, and the accuracy and performance of
DBEM are also better than those of conventional BEM for solving the
electric intensity field of MEMS combdrives. By way of the DBEM
presented in this paper, an accurate and reasonable electrostatic field can be
obtained, and the follow-up control method of levitating force for the

MEMS combdrive can be implemented more precisely.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A MEMS (microelectromechanical systems) combdrive as
shown in figure 1 usually has two sets of fingers. The one
that is connected to the substrate, is called the fixed fingers
(stationary electrode), and the other, which is released from
the substrate, is called the movable fingers. When two
different voltages are applied to these two sets of fingers,
the resulting electrostatic force drives the movable fingers
towards the fixed ones. Thus, motion is produced by this
combdrive in the direction of the movement of the movable
fingers [1]. Because a combdrive can be designed for
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either an electrostatic actuator or capacitive sensing, it has
become a very important device in MEMS [2]. Basically,
in-plane interdigitated combdrives are used in in-plane or
small out-of-plane/torsional motions [3], and asymmetric
combdrives can be utilized to generate large out-of-plane
or torsional motions [4]. Generally speaking, in a typical
in-plane interdigitated combdrive, the capacitance is linear
with displacement, resulting in an electrostatic driving force,
which is independent of the position of the movable fingers
except at the ends of the range of travel [5]. But, for some
special applications, combdrives with variable-gap profiles
can be designed, which will deliver the desired driving
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Figure 1. Layout of a linear lateral resonator driven and sensed with interdigitated capacitors (electrostatic combdrive).

force profiles by solving an appropriate inverse problem
[6].

For in-plane interdigitated combdrives, some advantages
[2] could be found: (1) vibrational amplitudes over 10 pum
are possible with relatively high quality factors at atmospheric
pressure, in contrast to structures which move normal
to the surface of the substrate. (2) The combdrive
capacitance is linear with displacement, resulting in an
electrostatic drive force, which is independent of vibrational
amplitude. (3) Flexibility in the design of the suspension
for the resonator. Though surface-micromachined polysilicon
resonators, which are driven by interdigitated capacitors, have
several aforementioned attractive properties, it is essential that
both the movable fingers and the fixed fingers of combdrives
remain coplanar for high quality MEMS devices. It was
reported that 2 ;om thick polysilicon resonators with compliant
folded-beam suspensions have been observed to levitate over
2 pum when driven by an electrostatic comb biased with a dc
voltage of 30 V [2]. Because the levitation effect will seriously
downgrade the performance and reliability of MEMS devices,
how to obtain the actual electrostatic force responsible for
levitation plays a very important role. Since the calculation
of surface charge density around the movable fingers is the
base for calculating the levitating force, knowledge of the
electric potential V and electric field intensity E around
the fixed fingers, movable fingers and ground plane of MEMS
combdrives, considering the fringing of field around the edge,
is needed first for engineering design. Searching for an
efficient method for the electrostatic analysis task is very
important for engineers.

The paper is organized as follows. The numerical
methods for MEMS and EM devices are introduced in
section 2. Section 3 involves the reason for choosing DEBM
for MEMS combdrives, and some comparisons between
the dual BEM (DBEM) and conventional boundary element
methods (BEM) are described. In section 4, we introduce the
procedure of dual integral equations for electrostatic problems.
Before the DBEM was used to solve and simulate real MEMS
devices and structures, a benchmark test was performed against
the analytical solution to compare its computational accuracy
(section 5). In section 6, the computational results of DBEM
simulation for the MEMS combdrive levitation are provided
and investigated, and the numerical accuracy and performance
of DBEM and conventional BEM are also compared. Some

remarks based on the reported results are discussed in section 7.
Finally, there is a concise conclusion in section 8.

2. Numerical methods for MEMS and EM devices

Basically, electrical engineers are familiar with electrostatic
problems, and diverse numerical methods have been
regularly used in MEMS and EM (electromagnetics) [7].
Among different numerical approaches, the finite element
method (FEM), which is based on the representation
and approximate solution of boundary value problems of
engineering mathematics in terms of partial differential
equations [8, 9], and the boundary element method based on
integral equations [10] have moved from being research tools
for scientists to become powerful design tools for engineers.
One of the main advantages of the BEM, when compared
to the FEM, is that discretizations are restricted only to the
boundaries, making data generation much easier. The BEM is
also ideally suited to the analysis of external problems where
domains extend to infinity, since discretizations are confined to
the internal boundaries with no need to truncate the domain at
a finite distance and impose artificial boundary conditions,
and to problems involving some form of discontinuity or
singularity, due to the use of singular fundamental solutions
as test functions. It is also interesting to point out that the
unknowns in the BEM are a mixture of the potential and its
normal derivative, rather than the potential only as in the FEM.
This is a consequence of the BEM being a ‘mixed’ formulation,
and constitutes an important advantage over FEM. Especially
for the diverse gaps of MEMS combdrives—gaps between
fingers and from fingers to the ground plane—many laborious
works of finite element modeling are needed, compared to
those of the boundary element model, because the BEM can
provide a complete solution in terms of boundary values only,
with substantial saving in modeling effort. Therefore, there is
no doubt that the BEM has become a very appealing approach
in numerical simulation of MEMS [11].

As we know, with the rapid increase in device density
and working frequency in VLSI circuits, the electrical
characteristics of interconnects are becoming more important
factors governing the circuit performances such as delay,
power consumption, reliability, etc. This has increased
the interest in efficient methods for calculating electrical
parameters of interconnects. Therefore, many researchers
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have used diverse accelerated BEMs (e.g. FastCap, GIMEI,
ODDM, QMM, etc) for efficiently solving the large-scale
problem of VLSI & EM systems [12-16]. To the best
knowledge of the authors, accelerated BEMs are very efficient
for large-scale problems because they can reduce CPU
time and memory requirement from exponential order to
logarithmic order. For a problem with N degrees of freedom, or
N unknowns, the accelerated BEMs use O(N log N) memory,
and close to O(N log N) time, as opposed to the traditional
methods requiring O (N?) memory and O (N?) time [17]. As
N becomes very large, there will be a tremendous disparity
in memory and time usage between accelerated BEMs and
conventional BEMs. Although many BEM researchers have
used diverse accelerated BEMs for large-scale problems (e.g.
complex VLSL modeling) they need to deal with the huge
dense matrix from the BEM. But, for the concerned levitation
problem of MEMS combdrives, it is not necessary to set up a
huge BEM model because only the surface charge distribution
around the boundary of movable fingers is needed. In reality,
the accelerated BEM may have an advantage over DBEM for
large-scale problems, but this predominance is not obvious
for non-large-scale problems such as the cases presented
in this paper because the model of a MEMS combdrive is
not as large as a VLSI system. As the accelerated BEM
cannot display its advantage (computational efficiency) over
the DBEM for non-large-scale problems, the DBEM was used
in this paper because it is an alternate efficient method for
MEMS combdrives.

Although some simplified numerical models for
electrostatic combdrives can be found in [4, 5], there are still
three types of fringing fields not taken into account, which
result from the ground plane, widths and heights of fixed
and movable fingers. In order to obtain more reasonable
computational results for the electric field, the DBEM is
employed and developed to analyze electrostatic problems
for MEMS combdrive levitation, considering the fringing of
field around the edges, in the paper. After using the DBEM
to accurately calculate the electrostatic response of a comb
finger biased with a dc voltage, the induced vertical force per
unit length of the movable comb finger at different levitation
positions can be obtained. Then this vertical force density
can be plotted against levitation at different dc bias voltages,
as in [4, 5]. In order to check the validity of the numerical
model presented in this paper, several examples of different in-
plane interdigitated combdrive designs from [3] are furnished,
and the solutions of the DBEM are compared with analytical
solutions if available and with an FEM package [18].

3. The reason for choosing DBEM for MEMS
devices

As we all know, there are two commonly used electrostatic
actuators for linear motion: combdrive and parallel-plate
actuators. For a thin parallel-plate capacitor, a degenerate
boundary will be formed while using the conventional BEM.
(The degenerate boundary refers to a boundary, two portions
of which approach each other such that the exterior region
between the two portions becomes infinitely thin [19].) The
DBEM can deal with this singularity very efficiently and
directly, but the conventional BEM cannot work well without
an artificial boundary technique for the interface since the
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coincidence of the boundaries gives rise to an ill-conditioned
problem. The sub-domain technique in the conventional
BEM with artificial boundaries for a degenerate boundary
has been introduced to ensure a unique solution. The main
drawback of the technique is that the deployment of artificial
boundaries is arbitrary and, thus, cannot be implemented easily
into an automatic procedure. In addition, model creation
is more troublesome than in the single domain approach.
To tackle such degenerate boundary electrostatic problems
the DBEM has been proposed in [20], and all the above-
mentioned boundary value problems can be solved efficiently
in the original single domain if using the DBEM. Besides
the degenerate boundary problem, there are also several
advantages (e.g. the degenerate scale rank deficient problem,
corner problem, the calculation of the tangent flux on and near
the boundary, the adaptive boundary element methods, etc) for
the DBEM over the conventional BEM, which can be found
in some published papers.

3.1. Degenerate scale (rank deficient) problem

Besides degenerate boundary, degenerate scale is another
important degenerate source for singularity of the BEM.
For problems with special scale of geometric shape, many
researchers have found that the influence matrix of the weakly
singular kernel may be singular for the Dirichlet problem
[21, 22]. Therefore, if encountering electrostatic problems
with some specific geometry, the singularity caused by a
degenerate scale will be encountered, since the influence
matrix is rank deficient, and BEM numerical results become
unstable. From some published papers [23, 24], we can find
that the numerical difficulty of degenerate scale concerning the
conventional BEM can be solved by way of the hypersingular
formulation instead of using the singular formulation in the
DBEM.

3.2. Corner problem

The corner problem with Dirichlet boundary condition
is another problem in which the number of equations
is not sufficient for the conventional BEM. Again, the
hypersingular integral formulation of the DBEM plays arole in
providing independent constraints for the boundary unknowns.
Unfortunately, the singular equations of the BEM alone cannot
distinguish the normal vectors of the collocation points at the
corner. The hypersingular integral formulation of DBEM can
be collocated to the points before the corner and after the
corner with two different independent normal vectors, causing
the equations to be independent, as shown in [25] for the two-
dimensional Laplace equation.

3.3. Calculation of the tangent flux on and near the boundary

Because some BEM researchers have shown that the accuracy
of the numerical derivate using the BEM is lower than that
of the direct calculation of the boundary stress using the
hypersingular formulation of the DBEM, since the integral
representation of the solution exhibits the jump behavior across
the boundary, the stress or flux near the boundary often displays
the Gibbs phenomenon [26]. Therefore, the hypersingular
integral equation of DBEM can be used to directly calculate the
tangent electric field instead of using the numerical derivative
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of the obtained potential field. The tangent derivative along the
boundary has been formulated in terms of both the boundary
potential and the boundary normal flux. Of course, the
numerical error from the conventional BEM facing the fringing
of field around the edges could be eliminated.

3.4. Adaptive boundary element methods

An essential ingredient for all adaptive BEMs is a reliable
estimate of the local error. The hypersingular integral equation
used in the DBEM is a complementary equation available for
error estimation. Using this concept, the error indicator can
successfully track the form of the exact error curve [27].

4. Dual integration equations for electrostatic
problems

For a homogeneous medium, the governing equation of
electrostatics can be written in V2V = —p/e, where V? is
the Laplacian operator. This Poisson’s equation states that
the divergence of the gradient of electric potential (V') equals
—p/¢ for a simple medium, where ¢ is the permittivity of the
medium and p is the volume density of free charges [28]. At
points in a simple medium where there is no free charge, the
Poisson equation is reduced to V2V = 0, which is known
as Laplace’s equation. The Laplace equation plays a very
important role in MEMS and EM. It is the governing equation
for electrostatic problems involving a set of conductors, such
as capacitors, maintained at different potentials. Once V is
found from Laplace’s equation, E (electric field intensity) can
be determined from —V'V, and the charge distribution on the
conductor surfaces can be determined from p; = ¢ En.

As we know, the electrostatic levitating forces acting on
the movable fingers need to be obtained first before solving
the mechanical response of MEMS combdrives; hence, the
electrostatic analysis work to obtain the distribution of surface
charge density around the movable fingers is the base for
calculating the levitating force density. Therefore, choosing an
efficient method such as the DBEM is necessary for simulating
the exterior electric field. The electrostatic problem consists of
finding the unknown potential function ® (or V) in the partial
differential equation. In addition to the fact that @ satisfies
the Laplace equation within a prescribed solution region D, the
potential function ® must satisfy certain conditions on B which
is the boundary of D. Usually these boundary conditions are the
Dirichlet ((x) = f(x)) and Neumann (0®(x)/on, = g(x))
types, where f(x) and g(x) denote known boundary data,
and n, is the unit outer normal vector at the point x on the
boundary B (see figure 2). Therefore, the governing equation
and boundary conditions of electrostatic problems could be
written in the following form.

Governing equation:
Vid(x) =0, x in D. D

For the interior electrostatic problems, the dual integral
equations were derived as follows:

nd((x) = CPV/ Ti(s, x)®(s)dB(s)
B

—RPV/ U'(s, x)[0D(s)/dns]dB(s) 2)
B

X, ¥ geometrical node

O physical node

X
degenerate boundary

non-degenerate boundary

Figure 2. Boundary element discretization for degenerate boundary
and non-degenerate boundary.

w[0P(x)/0n,] = HPV/ M'(s, x)®(s) dB(s)
B

- CPV/ Li(s, x)[0D(s)/dn;1dB(s) 3)
B

where x is on the boundary B, ®(x) and [0P(x)/In,] are
the potential and flux, U i T L' and M' are the four
kernels (U (s, x) = In(r); T(s,x) = U (s, x)/dng; L(s, x) =
AU (s, x)/dny; M(s,x) = 3°U(s, x)/dn,dn,, where r =
|s — x|, s and x being the position vectors of the points s
and x, respectively, and 7, is the unit outer normal vector
at point s on the boundary) in the dual integral equations
for the interior problems, and RPV, CPV and HPV denote
the Riemann principal value, Cauchy principal value and
Hadamard principal value, respectively [19, 20]. Generally,
equation (2) is called the singular boundary integral equation,
and equation (3) is called the hypersingular boundary integral
equation. Since the hypersingular boundary integral equation
plays an important role in the degenerate problems, many
researchers have paid much attention to this. Extending
equations (2) and (3) of the interior electrostatic problem to
the exterior problem by considering the regularity condition at
infinity for the integral on the infinite boundary B,, we have

Td((x) = CPV/ TC(s, x)®(s)dB(s)
B

—RPV/ US(s, x)[0D(s)/dns]dB(s) “)
B

7[d®(x)/n,] :HPV/ ME(s, x)®(s) dB(s)
B

- CPV/ LE(s, x)[3D (s)/dn,]1dB(s) 5)
B

where the superscript ‘e’ denotes the exterior problem.

The commutativity property of the trace operator and the
normal derivative operator provides us with alternative ways
to calculate the Hadamard principal value analytically [19].
First, L’Hospital’s rule is employed in the limiting process.
Second, the normal derivative of the Cauchy principal value
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Figure 3. Commutativity of trace and differential operator.

should be taken carefully by using Leibnitz’ rule, and then
the finite part can be obtained. The finite part has been termed
the Hadamard principal value or Mangler’s principal value.
In the derivation of dual equations, two alternatives can be
applied to determine the Hadamard principal value as shown
in figure 3.

4.1. Trace operator first and differential operator second

HPV / M (s, x)u(s)dB(s)
B

_ 0 {CPV/ T(s,x)u(s)dB(s)}. (6)
B

T 9n,

For simplicity, a constant element is adopted, i.e. u(s) = 1,
and equation (6) reduces to

d CR |

— CPV/ ds

dx a (x—19)
d [ -1

:—{f ’ ds+/c ~! ds}
dx a (X—S) x+e (.X—S)

1 1

a—Xx

c—x
after using the Leibnitz rule.

4.2. The differential operator first and trace operator second

HPV/ M(s, x)u(s) dB(s) = lim / M(s, y)u(s)dB(s).
B y=XJB

@)
Similarly, the constant element scheme can simplify
equation (7) into
. ¢ 1
lim

—d
(x —s5)2+y? s

1
= lim — |:tan71 ( 4 > — tan™! < 4 )]
y~>0y a— X cC— X

1 1

=0/,

a— X cC—X
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after using

1

. tanT o
li =
a—0 o
and
-1 1 b4
tan o +tan — = —.
o 2

The linear algebraic equations for an interior electrostatic
problem discretized from the dual boundary integral equations
can be written as

(T}, ){®,} = [U}, [(99/0n), )

(M), (@} = L}, [(d®/dn}, ©)
where {®,} and {0P/dn}, are the boundary potential and
flux, and the subscripts p and ¢ correspond to the labels of the
collocation point and integration element, respectively. For
the exterior electrostatic problem, we have

[T5, (@4} = [U;, ]{a®/0n), (10)
(M5, (@} = [LS, [(0®/dn},. (11)

The influence coefficients of the four square matrices
[U],[T], [L] and [M] can be represented as

Uy, = RPV/B U(sy, xp)dB(sy) (12)
Tpy = =7y +CPqV g T (sq, xp) dB(sy) (13)
L,, =md,, + CPV i qL(sq, x,)dB(sq) (14)
M,, = HPV i Mq(sq,xp) dB(sy) (15)

4

where B, denotes the gth element and §,, = 1 if p = g,
otherwise it is zero. The explicit form will be derived in
the following section. According to the dependence of the
out-normal vectors in these four kernel functions for the
interior and exterior electrostatic problems, their relationship
can easily be found:

Upg =Up, (16)
My, = 1, an
Tpy =Ty if p# Tpg =Tpg ifp=gq
(18)
L,, =-L}, if p #q; L,, =L, if p=gq.
(19)

5. An example of benchmark test for DBEM

Before the DBEM was used to solve and simulate real
MEMS devices and structures, the following benchmark test
was performed against the analytical solution to verify its
computational accuracy.

Benchmark test. Two grounded, semi-infinite, parallel-plane
electrodes are separated by a distance b. A third electrode
perpendicular to and insulated from both is maintained at
a constant potential Vy (see figure 4). Determine the
electric potential distribution in the region enclosed by the
electrodes.
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Figure 4. Cross-sectional figure for benchmark test. The plane
electrodes are infinite in the z-direction.

Figure 5. The related DBEM mesh discretization of benchmark test
(146 elements and 146 nodes).

5.1. Analytical solution

Using the method of separation of variables, the desired
electric potential distribution V(x, y) could be obtained [28],

V(x,y) = £C, exp(—nmx/b)sin(nmy/b) (20)

where C, = (4Vy/nm) if n is odd; C, = 0 if n is even;
n = 1,3,5,...,00. Equation (20) is a rather complicated
expression to plot; but since the amplitude of the sine terms in
the series decreases very rapidly as n increases, only the first
few terms are needed to obtain a good approximation. Several
equipotential lines are sketched in figure 4.

5.2. DBEM analysis

For convenience, the value of b is assumed to be 3.333, and
four points will be analyzed using rough mesh discretization
(146 elements and 146 nodes, see figure 5) of the DBEM,
and compared with the analytical data computed from
equation (20). The results of electric potential under the
DBEM and analytical methods are listed in table 1. Because
the errors between the analytical method and the DBEM are
lower than 1%, the simulation data of the DBEM presented in
this paper are valid and convincing for electrical engineers.

6. DBEM simulation for MEMS combdrive
levitation

The successful electrostatic actuation of micromechanical
structures requires a ground plane under the structure in order
to shield it from relatively large vertical fields [3]. In order
to demonstrate the suitability of DBEM, several electrostatic
combdrive problems under different designs proposed by Tang
et al [3] were used. In this paper, a4 um wide x 2 um thick
comb finger excited by two identically sized electrodes situated
2 um away from both sides of the finger, and 2 um above a
grounded substrate was used (see figure 1).

Case 1. A comb finger under levitating force (normal to
the substrate) induced by two adjacent electrodes biased at a
positive potential V), is shown in figure 6. Let us determine
the electric field distribution.

From figure 6, one can see that there is an obvious
fringing of field around the edges of fixed and movable
fingers, and the physical behavior (e.g. electric potential and

Stationary '

Stationary
electrode

electrode

Movable finger
(grounded)

-
Ground plane

Figure 6. Cross section of the potential contours (dashed lines) and
the electric fields (solid lines) of a comb finger under levitating force
induced by two adjacent electrodes biased at a positive potential.

Table 1. The results of electric potential of benchmark test under
DBEM and analytical methods.

Locations V(x,y) from V(x,y) from

(x,y) DBEM analytical method Error
(0.667,2.778)  0.40500V, 0.407 890V, —0.71%
(3.333,0.556)  0.027363V, 0.027 536V, —0.63%
(6.667, 1.111)  0.002 043V, 0.002 058V, —0.73%
(9.999, 1.667)  0.000 102V} 0.000 103V, —0.97%

electric field intensity) of this area is very complicated. Since
it is not easy to obtain the analytical solutions, and some
simplified numerical models for electrostatic combdrives from
[4, 5] cannot accurately simulate the fringing field, the FEM
simulation [ 18] was used to compare with the following DBEM
data. Because of the fringing of field around the edges, a large
finite element model was set up in order to obtain a reasonable
result. In addition, the symmetric boundary between two
adjacent fingers using proper Neumann boundary conditions
was used to simplify the dimensions of FEM and DBEM
models.

Over 3000 points will be analyzed using coarse mesh
discretization (95 elements and 95 nodes, see figure 7) of
the DBEM, and compared with the reference data computed
from a large refined mesh FEM model (3608 elements and
3790 nodes, see figure 8(a)) because the results from the
coarser mesh FEM model (1490 elements and 1607 nodes, see
figure 8(b)) are not adequately accurate. The results of electric
potential (equipotential lines) under a refined mesh FEM and
coarse mesh DBEM were shown in figure 9. Comparing
the results of electric potential field using a coarse mesh
DBEM and refined mesh FEM, one can see that the difference
of electric potential distribution listed in table 2 is very
little (<1.3%), and the equipotential lines from coarse mesh
DBEM are smoother than those from refined mesh FEM. From
figure 9, the ground plane contributes to an obvious unbalanced
electrostatic field distribution if a heavily doped polysilicon
film underlies the resonator and the comb structure like
figure 6.

Besides the results of electric potential field, the
distribution of normal electric field intensity (£,,) on the bottom
and upper sides of movable finger also needs to be studied.
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Figure 7. The related DBEM coarse mesh discretization.

Table 2. The results of electric potential of case 1 under diverse
numerical methods. The origin (x, 0, 0) of the coordinates is located
at the left bottom corner of the DBEM model shown in figure 7.

Locations V(y, z) from V(y, z) from

(v, 2) FEM DBEM Difference
(5.9867,5.0151) 0.1580444V, 0.15975V, +1.08%
(6.1889, 4.8152)  0.1301514V, 0.13162V, +1.13%
(5.7961,4.4058) 0.06673584V, 0.067443V,  +1.06%
(1.6000, 1.6000)  0.074 8376V, 0.073904Vv, —1.25%

From figures 10 and 11, one can see that the values of normal
electric field intensity (£, ;) on the bottom and those (E, ») on
the upper side of movable finger are both obviously dependent
on the value of location on the left side of movable finger
(locy). Because the charge distribution on the conductor
surfaces can be determined from p; = €E, (the normal
component of the electric field E, at a conductor boundary is
equal to the surface charge density p; on the conductor divided
by the permittivity ¢ [28]) if € is a constant, the relationship
between the normal force density f, acting on the surface of a
conductor and the charge density p, of that conductor is

fo=—=0.5p] /.

Thus, the electrostatic force density F), acting on the movable
finger along the boundary

nszw
B

can be calculated if pg (or E,) is known. Therefore, the
levitating force density F' (normal to the substrate) acting on
each movable finger is equal to the difference of electrostatic
force density F, between upper side and bottom side of
concerned movable finger, and that is obviously dependent
on the difference of E,; and E,,. Because the difference
of E, ; and E, » is obvious in this case, the imbalance in the
field distribution will result in a net vertical force induced on

ey

(22)
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Figure 8. The related FEM mesh discretization (left part: refined
mesh model; right part: coarser mesh model).

the movable comb fingers, which levitates the structure away
from the substrate. Calculated by equations (21) and (22), the
value of F is 0.1504 ¢V} um™".

To go a step further, the F under diverse levitation (§) and
V), can be shown in figure 12. Some interesting results from
figure 12 can be found. First, the stable equilibrium levitation,
80, (1.19 um for this case), is the same for any nonzero bias
voltages V,,. Hence, in the absence of a restoring spring force,
the movable finger will be levitated to §) upon the application
of a dc bias. Second, given any &, the F is proportional to V;.
Because &y should be minimized for the cause of performance,
the following design (cases 2 and 3) proposed by Tang et al
[3] will be simulated for modification and improvement.

Besides the electric potential distribution shown in figure 9
and listed in table 2, the distribution of electric intensity field
E is also important. For the conventional BEM, F is usually
calculated by a numerical derivate of electric potential V for
two adjacent nodes (E, = —AV /Ay and E, = —AV/Agz,
where Ay and Az of concerned and adjacent nodes are shown
in figure 13), and E can be obtained by direct calculation
using the hypersingular formulation of the DBEM. For V,,, the
results of electric field intensity £, and E. of case 1 under
diverse values of Ay and Az by way of the BEM and DBEM
are listed in tables 3 and 4, and the differences of E, and
E, in this case between the BEM and DBEM are shown in
figure 14. By way of the conventional BEM, figure 14 shows
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Figure 9. Results of electric potential field (equipotential lines) of case 1 using the coarse mesh DBEM (left part) and refined mesh FEM

(right part).
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Figure 10. The distribution of normal electric field intensity E, ; on
the bottom of the movable finger under diverse design cases
(unit: V,, pm=").
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on the upper side of the movable finger under diverse design cases
(unit: V,, pm™").

that the larger the Ay and Az are, the less the accuracy is, and
the accuracy of E is better than E, for the same value of Ay
and Az. One can also see that we need more auxiliary nodes
than DBEM to calculate the derivate of V of two adjacent
nodes for solving the E of each concerned node if using the
conventional BEM. Therefore, the accuracy and performance
of the DBEM are better than those of the conventional BEM
for case 1.

Case 2. Although the electric field distribution becomes
balanced if the ground plane is eliminated and the substrate
beneath the structures is removed, or a top ground plane
above the combdrive is suspended, it is impracticable and
infeasible for MEMS devices because both of these approaches
require much more complex manufacturing processes. There
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Figure 12. The levitating force density (F) acting on the movable
finger under diverse levitation and V,, (unit: eV? um™h.
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koY

Figure 13. The relative locations of concerned and adjacent nodes.

are two simple and efficient control methods proposed by
Tang et al [3] to reduce the levitating force. A simpler
solution is to modify the combdrive itself, which is to reverse
the polarity on alternating drive fingers results in the field
distribution shown in figure 15. For a grounded movable comb
finger, a differential dc bias V), is applied to the two adjacent
electrodes shown in figure 15. Let us determine the electric
field distribution.

The results of electric potential under the refined mesh
FEM and coarse mesh DBEM are shown in figure 16, and
one can see that the difference of electric potential listed in
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Figure 14. The differences of £, and E. of case 1 between the
BEM and DBEM.

Table 3. The results of electric field intensity E, of case 1 under
diverse values of Ay by way of the BEM and DBEM.

Location of

concerned node  E,(y, z) from E,(y, z) from

(x,5.0,5.0) BEM DBEM Difference
Ay =0.025 pum 0.055301871V, +0.020%
Ay =0.05pum 0.055316325V, +0.046%
Ay =0.10 um  0.055401526V, 0.055291V, +0.200%
Ay =020 pum  0.05573304V, +0.799%
Ay =040 um  0.057026338V, +3.139%
Ay =0.80pum 0.06172560V, +11.638%

z
Y
Stationary
electrode

Stationary
electrode

Movable finger
{grounded)

Ground plane

Figure 15. Cross section of the potential contours (dashed lines)
and the electric fields (solid lines) around a movable comb finger
when differential dc bias is applied to the two adjacent electrodes.

Table 6. The results of electric field intensity E of case 2 under
diverse values of Ay by way of the BEM and DBEM.

Location of

concerned node  E,(y, z) from E,(y, z) from

Table 4. The results of electric field intensity E, of case 1 under
diverse values of Az by way of the BEM and DBEM.

Location of

(x,5.0,5.0) BEM DBEM Difference
Ay =0.025 pum 0.083717532V, +0.003%
Ay =0.05pum 0.083747707V, +0.039%
Ay=0.10um  0.08343194V, 0.083715V,  +0.150%
Ay =020 pum  0.084224291V, +0.610%
Ay =040 um  0.08572723V, +2.400%
Ay =0.80 um  0.091383345V, +9.160%

concerned node E.(y, z) from E.(y, z) from

(x,5.0,5.0) BEM DBEM Difference
Az =0.025 um —0.1487479V, —0.001%
Az =0.05um —0.1487582V, +0.006%
Az =0.10um —0.1487879V, —0.14875V, +0.025%
Az=020pum —0.1488855V, +0.091%
Az =040 um —0.1492378V, +0.328%
Az =080 um —0.1497661V, +0.683%

table 5 is small (3%). From figure 16, vertical electric fields
terminating on the top surface of the movable comb finger are
eliminated because the electric potential gradient of the top
surface of the central movable comb finger is very small, and
the F' can be brought down successfully. From figures 10 and
11, one can also find that the values of E, ; and E,, » are both
obviously dependent on the value of locy, but the F is almost
zero because of the force balance in this case. Therefore, we
can conclude that the design of case 2 can reduce the levitation
very efficiently.

Besides the electric potential distribution shown in
figure 16 and listed in table 5, the results of electric field
intensity E, and E; of case 2 under diverse values of Ay

and Az by way of BEM and DBEM are also listed in tables 6
and 7, and the differences of E, and E, between BEM and
DBEM are shown in figure 17. By way of conventional BEM,
figure 17 also shows that the larger the Ay and Az are, the less
the accuracy is, and the accuracy of E is also better than E|
for the same value of Ay and Az. We also can find that the
accuracy and performance of the DBEM are better than those
of the conventional BEM for this case.

Case 3. To further suppress levitation, the ground plane is
modified such that underneath each comb finger there is a
strip of conductor biased at the same potential, as illustrated in
figure 18. For a grounded movable comb finger, a differential
dc bias V), is applied to the two adjacent electrodes and
the striped ground conductors shown in figure 18. Let us
determine the electric field distribution.

The results of electric potential under refined mesh FEM
and coarse mesh DBEM are shown in figure 19, and the
difference listed in table 8 is also very small (<1.7%). In
this case, the polysilicon layer is used to form the crossovers
to electrically isolate alternating comb fingers, and figure 19

Table 5. The results of electric potential of case 2 under diverse numerical methods. The origin (x, 0, 0) of the coordinates is located at the

left bottom corner of the DBEM model shown in figure 7.

Locations
. 2)

V(y, z) from
FEM

V(y, z) from

DBEM Difference

(6.1889,4.8152) —9.55811 x 1073V, —9.8519 x 1073V, +3.07%

(5.7961, 4.4058)
(1.6000, 1.6000)

55481 x 103V,
7.48254 x 1071V,

+0.74%
—1.25%

5.580 x 1073V,
7.389 x 1071V,
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Figure 16. Results of electric potential field (equipotential lines) of case 2 using the coarse mesh DBEM (left part) and refined mesh FEM

(right part).
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Figure 17. The differences of E, and E. of case 2 between the
BEM and DBEM.

Table 7. The results of electric field intensity E, of case 2 under
diverse values of Az by way of the BEM and DBEM.

Location of

concerned node E.(y, z) from E.(y, z) from

(x,5.0,5.0) BEM DBEM Difference
Az =0.025 um —0.04184856V, +0.016%
Az =0.05pum —0.04185452V, +0.030%
Az=0.10um —0.04188907V, —0.041842V, +0.110%
Az=020pum —0.04203393V, +0.460%
Az =040 um  —0.04256453V, +1.730%
Az=0.80 um —0.04383965V, +4.770%

shows that the F can be decreased enormously because the
electric potential gradient of the top surface of the central
movable comb finger is almost zero. From figures 10 and
11, we can also find that the values of E,; and E,, are
both obviously dependent on the value of loc,, but the value
of F is almost zero because of a force balance like case 2.
Therefore, this design can also efficiently reduce the levitating
force. In addition, experimental data from [3] even show
that the levitating force is suppressed by over an order of
magnitude compared to the original biasing scheme shown in
figure 6.

Besides the electric potential distribution shown in
figure 19 and listed in table 8, the results of electric field
intensity E, and E in this case under diverse values of Ay and
Az by way of the BEM and DBEM are also listed in tables 9
and 10, and the differences of E, and E, between the BEM
and DBEM are shown in figure 20. From the results shown

L.

Stationary
electrode

\ Stationary
electrode

Figure 18. Cross section of the potential contours (dashed lines)
and the electric fields (solid lines) around a movable comb finger
when differential dc bias is applied to the two adjacent electrodes
and the striped ground conductors.

in figure 20, we can understand that the larger the Ay and
Az are, the less the accuracy is, and the accuracy of E is
also better than E, for the same value of Ay and Az if using
the conventional BEM. Hence, one can also be convinced that
the DBEM is an efficient method for solving the electrostatic
problem of MEMS combdrive.

7. Discussions

(1) Because levitating force control can get a higher quality
factor of a combdrive, how to get an accurate electrostatic
field is very important and indispensable for the design
of MEMS devices. Though some simplified numerical
models for electrostatic combdrives can be found in [4, 5],
there are three types of fringing fields not taken into
account, which result from the ground plane, widths and
heights of fixed and movable fingers. After using a coarse
mesh DBEM to accurately calculate the electrostatic
response of the comb finger biased with a dc voltage, the
induced vertical force per unit length of the movable comb
finger at different levitation positions can be obtained.
Then this vertical force density can be plotted against
levitation at different dc bias voltages, as in [4, 5].
Besides the levitating force case, driving force control can
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Table 8. The results of electric potential of case 3 under diverse numerical methods. The origin (x, 0, 0) of the coordinates is located at the
left bottom corner of DBEM model shown in figure 7.

Locations V(y, z) from
., 2) FEM

V(y, z) from
DBEM Difference

(6.1889,4.8152) —9.55871 x 1073V, —9.5503 x 107V, —0.09%
(5.7961, 4.4058) 557861 x 107V,  5.5616 x 107V, —0.30%
(1.6000, 1.6000)  8.91016 x 107!V,  8.7603 x 107'V, —1.68%

Figure 19. Results of electric potential field (equipotential lines) of case 3 using the coarse mesh DBEM (left part) and refined mesh FEM
(right part).
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Figure 20. The differences of £, and E. of case 3 between the
BEM and DBEM.

also utilize the coarse mesh DBEM to deal with related
electrostatic problems.

(2) Results show that the values of normal electric field

intensity (E, ;) on the bottom and those (E,») on
the upper side of a movable finger are both obviously
dependent on the location on the left side of movable
finger (loc,) under diverse design cases. Because the
difference of E,; and E,, is obvious in case 1, the
imbalance in the field distribution will result in a net
vertical force induced on the movable comb fingers, which
levitates the structure away from the substrate, but the
values of levitating force density (F) of cases 2 and 3
are almost zero because of the force and moment balance
for the movable finger. Therefore, we can conclude that
cases 2 and 3 can efficiently suppress the levitation of a
MEMS combdrive because the levitating force density of
the movable finger concerned can be reduced from 0.1504
eV} pum™" to zero.

(3) Results also show that the stable equilibrium levitation,

80, (1.19 pm for case 1), is the same for any nonzero bias
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Table 9. The results of electric field intensity £, of case 3 under
diverse values of Ay by way of the BEM and DBEM.

Location of

concerned node  E,(y, z) from E(y, z) from

(x,5.0,5.0) BEM DBEM Difference
Ay =0.025 um 0.083906777V, +0.012%
Ay =0.05pum 0.083926298V, +0.035%
Ay =0.10um 0.084 025361V, 0.083897V, +0.153%
Ay =0.20 pum  0.084407292V, +0.608%
Ay =040 pum  0.085915655V, +2.406%
Ay =0.80 um  0.091586903V, +9.170%

Table 10. The results of electric field intensity E, of case 3 under
diverse values of Az by way of the BEM and DBEM.

Location of

concerned node E.(y, z) from E.(y, z) from

(x,5.0,5.0) BEM DBEM Difference
Az =0.025 um —0.04179000V, —0.004%
Az=0.05pum —0.04180423V, +0.030%
Az=0.10um —0.04183837V, —0.041792V, +0.112%
Az=020pum —0.04198500V, +0.462%
Az =040 um —0.04251922V, +1.741%
Az=0.80 um —0.04380557V, +4.820%

voltages V,,. Hence, in the absence of a restoring spring
force, the movable finger will be levitated to §y upon the
application of a dc bias. Second, given any levitation
(8), the F is proportional to the square of the applied dc
bias, Vlf.

(4) By comparing the element mesh of the refined mesh FEM
and coarse mesh DBEM of an electrostatic combdrive,
considering the fringing of field around the edges, one can
see that the numbers of elements and nodes for the refined
mesh FEM are much higher than those of the coarse mesh
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DBEM to get a reasonable result. Though using the FEM
is widespread for MEMS devices nowadays, it is still
very difficult to establish the boundary conditions and
generate all the proper FEM because the values of gap
for MEMS combdrives—gaps between fingers and from
fingers to the ground plane—always change many times
before final layout in the variable design stage. Therefore,
we strongly recommend the DBEM for studying the
electrostatic field of the levitation of MEMS combdrives
because the DBEM’s discretizations are restricted only to
the boundaries, and it makes data generation much easier
than FEM.

8. Conclusions

The dual integral formulation of electrostatic combdrive
problems, considering the fringing of field around the edges,
has been presented in this paper. ~Comparisons of the
results between the FEM and DBEM analyses were discussed
with respect to diverse design cases for electrostatic MEMS
combdrives in order to demonstrate the efficiency of the
DBEM. It has been ensured that the capabilities of coarse mesh
DBEM simulation are acceptable after comparison with the
refined mesh FEM data. For electrical engineering practices,
since the numbers of elements and nodes for the refined
mesh FEM are much higher than those of the coarse mesh
DBEM to get a reasonable result, and it wastes much time for
diverse values of gap design if using the domain-type FEM,
so the present boundary-type DBEM has great potential for
industrial applications, especially in the initial variable design
stage.
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