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In this paper, a meshless method for the acoustic eigenfrequencies using radial basis
function (RBF) is proposed. The coefficients of influence matrices are easily determined by
the two-point functions. In determining the diagonal elements of the influence matrices,
two techniques, limiting approach and invariant method, are employed. Based on the RBF
in the imaginary-part kernel, the method results in spurious eigenvalues which can be
separated by using the singular value decomposition (SVD) technique in conjunction with
the Fredholm alternative theorem. To understand why the spurious eigenvalues occur,
analytical study in the discrete system by discretizing the circular boundary is conducted by
using circulants. By using the SVD updating terms and documents, the true and spurious
eigensolutions can be extracted out respectively. Several examples are demonstrated to see
the validity of the present method.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The mesh generation of a complicated geometry is time consuming in the stage of model
creation for engineers in dealing with the engineering problems by using the numerical
methods, such as the finite difference method (FDM), finite element method (FEM) and
boundary element method (BEM). In the recent years, researchers have paid attention to
the meshless method which the element is free. The initial idea of meshless method dates
back to the smooth particle hydrodynamics (SPH) method for modelling astrophysical
phenomena [1]. Several meshless methods have also been reported in the literature, for
example, the element-free Galerkin method [2] and the reproducing kernel method [3].
For acoustics, the integral equations have been utilized to solve the interior and exterior
problems for a long time. Several approaches, e.g., complex-valued boundary element
method [4], multiple reciprocity method (MRM) [5-7], and the real-part boundary element
method [5, 8] have been developed for acoustic problems. To solve acoustic problems by
using the complex-valued BEM, the influence coefficient matrix would be complex
arithematics [9, 10]. Therefore, Tai and Shaw [11] employed only the real-part kernel to
solve the ecigenvalue problems and to avoid the complex-valued computation. The
computation of the real-part kernel method or the MRM [11, 12] has some advantages,
but it still faces both the singular and hypersingular integrals. To avoid the singular and
hypersingular integrals, De Mey [13] used imaginary-part kernel to solve the eigenvalue
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problems. At the same time, De Mey also found the spurious eigensolutions but he did not
discuss them analytically. Kang et al. [14-16] proposed the non-dimensional dynamic
influence function (NDIF) method to solve the eigenproblem of an acoustic cavity. Later,
Chen et al. [17] commented that the NDIF method is a special case of imaginary-part
BEM. Nevertheless, spurious eigensolutions are inherent in the imaginary-part BEM, real-
part BEM and MRM. Numerically speaking, the spurious eigensolutions result from the
rank deficiency of the coefficient matrix which is less than 2N, where 2N is the number of
boundary unknowns. This implies the fewer number of constraint equations making the
solution space larger. Mathematically speaking, the spurious eigensolutions for interior
acoustics and fictitious solutions for exterior acoustics arise from an ‘“improper
approximation of the null space of operator”.

In this paper, we will employ the imaginary-part kernel to solve the acoustic
eigenproblems. In solving the problem numerically, elements are not required and only
boundary nodes are necessary. Both the collocation and source points are distributed on
the boundary only. Besides, the kernel function is composed of two-point function which
is a kind of radial basis function. To examine the reason why spurious eigenvalues occur in
the above methods, we will employ the SVD updating technique in conjunction with the
Fredholm alternative theorem to overcome this difficulty by assembling the dual equations
[18-20]. The SVD updating terms and updating documents will be employed to extract out
the true and spurious eigenvalues for two-dimensional cavities respectively. For a special
case of circular cavity, the spurious eigensolutions will be analytically predicted in the
discrete system of circulants. Finally, the true eigenvalues for a circular cavity will be
derived analytically by approaching the discrete system to the continuous system using the
analytical properties of circulants [21].

2. MESHLESS FORMULATION USING RADIAL BASIS FUNCTION OF THE
IMAGINARY-PART KERNEL

The governing equation for an interior acoustic problem is the Helmholtz equation as
follows:

(V2 + D u(xi,x2) =0, (x1,x2) €D, (1)

where V2 is the Laplacian operator, D is the domain of the cavity and k is the wave
number which is angular frequency over the speed of sound. The boundary conditions can
be either the Neumann or Dirichlet type.

The radial basis function is expressed by

G(xi,57) = o(|s; — xil), (2)

where x; and s; are the ith collocation and jth source points, respectively. The Euclidean
norm |s; — x;| is referred to as the radial distance between the collocation and source
points. The two-point function (¢(|s; — x;])) is called radial basis function since it depends
on the radial distance between x; and s;. By considering the imagginary—part kernel of
fundamental solution for the Helmholtz equation (U(s, x) = Im{iHOU(kr)}) with globally
supported radial basis function, we can choose the four kernels in the dual formulation
[5, 22],

U(s,x) = Jo(k|s — x|) = Jo(kr), (3)

B oU (s, x) le(kr)yini

T
(S) x) ans r

4)
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oU(s,x) o Ji(kr)yn;

Lis.x) == : (5)
_ 82 U(S, X) . —sz (kr)y,y,niﬁj J1 (kr)n,—ﬁ,-
M(s,x) = onon, k( r? + r >’ ()

where r = |s — x| is the distance between the source and collocation points; #; is the ith
component of the outnormal vector at s; i; is the ith component of the outnormal vector at
x, J, denotes the first-kind Bessel function of the nth order, and y; = s; — x;,i = 1,2. Based
on the dual formulation [23] for the indirect method, we can represent the acoustic field
solution by

Single-layer potential approach:

Xi) = Z Uls,x)p;  — A} = [Ujl{¢;}, (7)

matrix form

ZaU SJ’XI o = Au} = [Lil{¢;}- (8)

on X matrix form

Double-layer potential approach:

i) = Z T(sp,xi)y;  —  Aw} = [Tyl{;}, )

matrix form

0T (s, x;)
’ . = (M, 1
Z Oony '/ matri:)form {ll} [ U]{w‘/}’ ( 0)
where {¢;} and {y;} are the generalized unknowns by using the single- and double-layer
potential approaches respectively. By adopting the two bases, J,,(kx) and its derivative
J,(kx), we can decompose the imaginary-part kernel functions into the separate forms,

Do v [ V0.0 = S5 SR ukp)eos(m0), R > p, .
(s,%) = UE0,0) =20 Tu(kp)Jm(kR)cos(mb), R<p, (1)
T _JT0,0) = >0 KT, (kR)J(kp)cos(mB), R > p, .
5=\ 750,0) = S K, (kp)In(kR)cos(mb),  R<p, 12
oo [ H0.0) = KR, (kp)eos(m0), R > p, N
(9 =9 150,00 = 3% kIn(kp) (kR)cos(mb), R<p, (13)
_MI0,0) =30 KT, (KR), (kp)cos(m0), R > p,
M) = {ME<970>=2;°__wkZJ,’,1<k 0, (kRcos(m0), R<p, P

where the superscripts “I”” and “E” denote the interior and exterior domains, x = (p,0)
and s = (R,0) in polar coordinate. By superimposing 2N lumped density along the
boundary, we have the four influence matrices

ap app asz -+ d12N-1 ajoN
a an a3 -+ d22N-1 ar N
a a a cee A3aN— a
[Uij]: 3,1 32 3,3 32N-1 3N | (15)

LdoN,1 danN2 d2N3  ccc AON2N-1 Q2NN |
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[ b1 bip bizg - biavoi bion ]
by bay  byz - baano1 by
b b b <o b3on_ b
[Ty] = | b3 32 33 3N 3N | (16)
Lbon1 bano bans -+ bavan—1 banoan ]
[cin el a3z o Clan-1 Cion ]
€21 €22 €3 -0 C22N-] C22N
_|e c ¢ ce 3o ¢
L] = | e 30 33 3ON—1 3N | (17)
LC2N1 CN2  CN3 - CN2N-1  CIN2N |
[ diy  dip diz - diano1 dion ]
dry  drpy dry - dhono1  dhon
d d d < dion_ d
[My] = | B 32 33 3N 5o | (18)
L dony danp dons oo donon—1 danon

where the elements can be obtained by
aij=U(sj,xi), by = T(s;,x:), (19,20)

¢ij=L(sj,xi),  dij = M(sj,x:). (21,22)

Then, we can determine {¢;} and {i;} by satisfying the boundary conditions.

3. CALCULATION FOR THE DIAGONAL ELEMENTS IN THE FOUR INFLUENCE
MATRICES USING THE L’HOPITAL’S RULE AND INVARIANT METHOD

The diagonal elements in the influence matrices where the radial distance is zero (r =0
when i =) can be solved by using the L’Hopital’s rule. Considering the asymptotic
behavior and the recurrence relations of Bessel functions, we can obtain the diagonal
elements as follows:

lim U(s, x) = lim Jo(kr) = 1, (23)
i 7(0.0) = iy 1R
= lim —k? (Jo(kr) _§Z(k”))ym,’ 0, (24)
Jim,
o
i Lis.3) =l 272
im0t = gz(kr))yjﬁj 0 -
Jim,

S2— X2
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(k]z (k}")yl’yjl/liflj J] (kr)n,ﬁ,)
7 +

lim M(s,x) = lim k
S—=X r—0 r r

_ 7. 2
_ Slli_{T;l 04 2 (Jo(kr) ;2(kr))n,n, _ k77 (26)

S2— X2

where r = \/(sl —x1)% + (52— x2)%.
For a circular case, the eigenvalues for the influence matrices in equations (15)—(18) can
be obtained by

= pAO/ cos(40) Z T (kR)T, (kp)cos(mb)p dO

m=—0o

= 2N, (kp)Jo(kp), €=0,%1,...,£(N—1),N, (27)

He =R / cos(£0) Z . (kR)J,(kp)cos(mb)p db

m=—0o

— ON(K)T,(kp)Ie(kp), €=0,%£1,...,£(N —1),N, (28)

— 1 " N U
"=o7g / 7ncos(€0) > Ju(kR)Y,, (kp)cos(mb)p dO

m=—00

—ON(k)Tu(kp)T,(kp), €=0,£1,....,£(N — 1),N, (29)

— 1 " ! !
K(—m/ cos(£0) Z I (kR)J,,(kp)cos(m0)p dO

m=—00

— N (kp)(kp), £=0,%1,...,£(N — 1), N, (30)

where A0 =2n/2N. According to the addition theorem for the Bessel function and
putting the same position for the two points, we have

= Bkp) +2 92 (k). G1)
m=1

By taking derivative with respect to p, we have
0= Jolkp)Ty(kp) +2° 3 I k)T, (p). (32)
m=1

Using the invariant property for the influence matrices, the first invariant is the sum of all
the eigenvalues

2Na Z;L,(Nfl)+"'+171+lo+l1+"'+/11\/
00

=2N > Jilkp)Ii(kp), (33)

l=—00

ANby =p_(yoyy+ -l oy ey
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2Nco =v_(y—1)y + -+ Vvor+vo+ v+ vy
o0

=2Nk > Ji(kp)Tj(kp), (35)

{=—00

2Ndy =k_(n—1)+ -+ Ko+ Ko+ K+ +Ky

=2NK* Y Jy(kp)3i(kp). (36)
{=—00
By substituting equations (31) and (32) into equations (33)—(36), we obtain ay = 1, by = 0,
co=0, and dy=k?/2 if the imaginary-part kernel was considered. Hence, the
indeterminate forms of diagonal elements are easily determined from the first invariant
as well as the values obtained by using the L’Hopital’s rule.

4. THE RELATIONS OF KERNELS AND MATRICES BETWEEN THE DIRECT AND
INDIRECT METHODS

In solving the boundary-value problem using BEM, two methods, direct method and
indirect method are employed. The direct method is derived by using the Green identity in
terms of the unknowns which are the actual physical quantities on the boundary. In the
direct method, we have

= ESXT/IS S) — ESX S S
O‘/BT (s, x)u(s) dB(s) /BU<, Jo(s) dB(s), (37)

0= / ME (s, x)u(s) dB(s) — / LE(s,x)t(s) dB(s), (38)
B B

where u(s) and #(s) are the potential and its normal derivative on the boundary and x is
outside the domain.

A key point of the indirect method is to represent a solution which satisfies the
governing equation. The unknown densities are determined by matching the boundary
conditions. Based on the superposition principle for the potentials, we have

Single-layer potential approach:

u(x) = /BU](S, x)¢(s) dB(s), (39)

t(x) = /BL’(S, x)¢(s) dB(s). (40)
Double-layer potential approach:

u(x) = / (s, x)(s) dB(s), (41)

() = / M5 3)0(5) dB(). (42)

where ¢(s) and y(s) are the single- and double-layer unknown densities, respectively. By
discretizing equations (37) and (38), we have the linear algebraic equations for the direct
method

75 {wy = (U7 {13, (43)
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TABLE 1

The distributed and concentrated-type of imaginary-part method for the single- and
double-layer potential approaches

Distributed-type Concentrated-type'
Single-layer potential Dirichlet problem: Dirichlet problem:
approach u(x) = [LU (5, X)p(s) dB(s)  ulx) = X, U'(s5,x,)4; = (SM) 4,
Neumann problem: Neumann problem:
1(x) = [ZL(s,x)p(s) dB(s) t(xi) = 32 L' (s, x0) 47 = (SM.,) ;4;
Double-layer Dirichlet problem: Dirichlet problem:
potential approach u(x) = [T (s, x)Y(s) dB(s) ulx;) =3 T! (s, x1)B; = (SM,),;B;
Neumann problem: Neumann problem:
1(x) = [ M (s,x)(s) dB(s) 1(xi) = 32; M (sj, i) B; = (SM,) ;B;

f NDIF method by Kang et al. [14-16] is the special case.

(M} = (L}, (44)

where {u;} and {¢;} are the potential and its normal derivative on the boundary B. By
discretizing equations (39)—(42), we have the linear algebraic equations for the indirect
method.

Single-layer potential approach:

u(x;) = [Uj{;}, (45)

t(xi) = [Lyl{e;}- (46)
Double-layer potential approach:

u(xi) = [Ty}, (47)

((xi) = [MGH{;}, (48)

where {¢;} and {y;} are the single- and double-layer unknown densities, respectively.
The distributed-type and concentrated-type of imaginary-part method for the single- and
double-layer potential approaches are shown in Table 1. By considering the degenerate
kernels equations (11)-(14) and comparing with equations (43)—(48), we can find
the following relations between the interior and exterior kernels from equations
(11)Y(14), i.e.,

Uf = U; or UE(s,x) = U(x,s), (49)

Tj = L or TH(s,x) = L' (x,5) (50)
E_ oI E _

L;=T;orL (s,x) = T"(x,s), (51)

Mf = Mé or ME(s,x) = M!(x,ys). (52)



TABLE 2

SVD updating technique for the true and spurious eigensolutions for a circular cavity using the direct and indirect methods

Boundary-value Eigensolutions Density function True and spurious eigenvalues
problem
Single-layer Double-layer Direct method Indirect method
potential approach potential approach
Dirichlet True eigensolution Ju(kp) =0 Jn(kp) =0 SVD updating UE SVD updating U!
problem term LE term T!
(Figure 1(a)) (Figure 1(b)) (Figure 1(c))
Spurious eigensolution Ju(kp) =0 I.(kp)=0 SVD updating [LEF  ME] SVD updating [T" M")
document document
(Figure 1(a)) (Figure 1(b)) (Figure 1(d))
Neumann True eigensolution T (kp) =0 J,(kp) =0 SVD updating TE SVD updating L
problem term ME term M!
(Figure 2(a)) (Figure 2(b)) (Figure 2(c))
Spurious eigensolution Jn(kp) =0 I (kp) =0 SVD updating [UF TF] SVD updating (Ul L]

(Figure 2(a))

(Figure 2(b))

document

document

(Figure 2(d))

Note: Ul = UE, L' = TE, T! = LF and M! = ME.

¥L9

TV L4 NdHD "L [
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5. DERIVATION OF TRUE AND SPURIOUS EIGENSOLUTIONS FOR THE CICULAR
CAVITY USING THE DEGENERATE KERNELS

In the circular cavity, we have the degenerate kernel functions in equations (11)—(14).
We assume the single- and double-layer density functions on the boundary as

o0

o(s) = Z (A, cos(nd) + B, sin(nb)), (53)
Y(s) = i (G cos(nb) + D, sin(n0)), (54)

where 4,, B,, C, and D, are coefficients. For the Dirichlet problem, equation (39) reduced to

0 :/ Ul(s, x)(s) dB(s)
/ Z Jn(kR) T, (kp) cos(mB) i (A, cos(nd) + B, sin(nd)) pdb,  (55)

0 m=—oo n=—oc0

by using equation (53). By considering the orthogonality of trigonometric function, we
have

2n _
T, m=n,
/ cos(m0) cos(nf) do = { (56)
0 0, m#n,
2n
/ cos(mb) sin(nf)do = 0. (57)
0
According to equation (56) and equation (57), equation (55) simplifies to
o0
0 :/ Z m (kR (kp)cos(mb) Z (A4, cos(nb) + B, sin(nd)) p do,
0 m=——oo n=—00
= Z A (kR (kp). (58)
m=—o00
TABLE 3
Zeros of the Bessel functions and its derivative, J,(k) and J, (k)
Problem Eigenvalues 1 2 3 4 5

Dirichlet problem 1.(k) 24042 55201 86537 11:7915 149309
Ji (k) 3.8317 7-0156 10-1735 133237 16-4706
T2 (k) 5-1356 84172 11-6198 147959 17-9598
T (k) 6-3802 97610 13-0152 162234 19-4094
Ju(k) 7-5883 11.0647 14-3725 17-6160 20-8269
Js(k) 87715 123386 15-7002 189801 222178
Neumann problem T (k) 0 3-8317 7-0156 10-1735 13-3237
T (k) 1-8412 5-3314 8:5363 117060 14-8636
I, (k) 3.0542 6-7071 99695 13-1703 16-3475
T (k) 42012 80152 11-3459 14-5858 177887
Ty (k) 53175 9-2824 12-6819 159641 19-1960
J(k) 6-4156 10-5199 139872 17-3128 20-5755
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Thus, we obtain the eigenequation J,,,(kR)J,,(kp) = 0 by using the single-layer potential
methods for the interior Dirichlet problem.
Similarly, we also obtain

0= / (s, x)(s) dB(s)

/ Z kJ,,,(kR)J,(kp)cos(m0) zoo: (Cy cos(nf) + Dy sin(nh)) pdd  (59)

0 m=—o0 n=-—o0

by using the double-layer potential approach. By considering equation (59) and the
orthogonality of trigonometric function, we have

/ Z kJ,,(kR)J,,(kp)cos(m0) zoo: (C, cos(n0) + D, sin(nf)) p d0

0 m=—0o0 n=—oo

= nk Z Cod! (KR)I(kp). (60)

m=—00

Thus, we obtain the eigenequation J (kR)J,,(kp) = 0 by using the double-layer potential
method for the interior Dirichlet problem.
In the Neumann problem, we have

0 :/BL’(S, x)¢(s) dB(s)

/ Z kJu(kR)T (kp)cos(m0) i (A, cos(nb) + B, sin(nd)) pdd  (61)

0 m=o0 n=—00

by substituting equations (13) and (53) into equation (40). By considering the
orthogonality of trigonometric function, equation (61) simplifies to

/ Z kJn(KR)J (kp)cos(mb) 200: (A, cos(nb) + B, sin(nd)) p dO

0 m=—00 n=—00
= 1k Z ApIn(kR)Y, (kp). (62)

Therefore, we obtain the eigenequation J,,(kR)J, (kp) =0 by using the single-layer
potential method for the interior Neumann problem.
Similarly, we use the double-layer density functions to obtain

/ M (s, x)y(s) dB(s)
/ Z KT (kR)J, (kp)cos(mO) Z (C, cos(n0) + D, sin(nf)) pdo.  (63)
0 m=—cc n=—o0
>

Figure 1. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Dirichlet problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Dirichlet problem. (¢) The minimum singular value for different wave
numbers using the SVD updating term [ Uu r ] for the Dirichlet problem. (d) The minimum singular value for
different wave numbers using the SVD updating document [T M ] for the Dirichlet problem. (e) The former
three interior modes by using the single-layer potential approach for the Dirichlet problem. (f) The former three
interior modes matrix by using the double-layer potential approach for the Dirichlet problem. (g) The former
three analytical interior modes for the Dirichlet problem.
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Figure 1. Continued.
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By considering equation (63) and the orthogonality of trigonometric function, we have

m
0 m=—o0 n=-0o0

0 /2n i K2 (kR)J, (kp)cos(m0) i (Cy cos(nd) + D, sin(nf)) p d0

= k? Z CnJ! (kR)Y., (kp). (64)

Iﬂ
m=—00

Therefore, we obtain the eigenequation J (kR)J, (kp) =0 by using the double-layer
potential method for the interior Neumann problem. All the relations of true and spurious
eigenvalues by using the single- and double-layer potential approaches are summarized in
Table 2.

6. METHOD TO EXTRACT OUT THE TRUE EIGENSOLUTIONS

The SVD technique is an important tool in linear algebra. A matrix 4 with dimension
M x N can be decomposed into a product of an orthogonal matrix ¥ (N x N), a diagonal
matrix 2~ (M x N) with positive or zero elements, and an orthogonal matrix @ (M x M),

[A]MXN = [(D]MXM[Z]MXN[W];FVxNa (65>

where the superscript “T” is the transpose, @ and ¥ are both orthogonal in the sense that
their column vectors are orthogonal,

¢i'¢j =0y, (66)
l//i'lpj = 0jj, (67)

where ®T¢ = PTW =1 and §; is the Kronecker delta symbol. Besides, we solve a
homogeneous equation and obtain a non-trivial solution from a column vector {i;} of ¥
such that the singular value (o;) is zero. For the direct method in the discrete system,
equations (43) and (44) are represented by

Singular equation:

(UT method) [T¥){u} = [UE]{t} =0, (68)
Hypersingular equation:
(LM method) [ME){u} = [LF]{t} =0. (69)
TABLE 4

True and spurious eigensolutions for the Dirichlet and Neumann problems using the present

Sformulation

Indirect formulation Dirichlet problem Neumann problem
Single-layer potential approach
True mode —nJ,,(ka)J,,(kp)cos(nqS)T —nkl) (ka)J,(kp)cos(nd)
Spurious mode —ndy(ka),(kp)cos(ng) | — k3! (ka)Jn(kp)cos(ng)
Double-layer potential approach
True mode —nl,(ka)J, (kp)cos(nd) —nsz;(ka)J;(kp)cos(nd))T
Spurious mode —nJ,,(ka)J:1(k,o)cos(nqﬁ)Jr —77:1(2qu(ka)J;(kp)cos(mb)]L

Note: 0<a<p, 0<¢p<2m.
Denotes a near-zero solution.
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For the Dirichlet problem, equations (68) and (69) are combined to

[[U ]} {1} = {oy. (70)

By using the SVD technique, the two matrices in equation (70) are decomposed into

[UF] =10 ]zV)[¥Y)" or [Uf] = ZJU{¢> Hy Y

[LF] = (@MY or [Lf] =) o/ {o7Huf ) (71)
7

For the linear algebraic system, ¢ is one column vector {y,} in the [P] matrix
corresponding to the zero singular value (o; = 0). By viewing ¢ as a {y,} vector in the
right unitary matrix [¥], equation (70) reduces to

[U*]{y,} = {0},
[LE{w;} = {0}, (72)

since

(// 0jj

Za% WYy (g} ={0} T © c{¢} = {0} (i no sum),

> ol HY T (i) = {0} o of{¢f} ={0}, (i no sum), (73)
J V=0

where {¢,} and {i;} are the orthonormal bases, g/ and o are the singular values of [U*]

and [LF] matrices, respectively. We can easily extract out the true eigensolutions

(c¥ = oF = 0) since there exists the same eigensolution (# = {y,}) in the Dirichlet problem

using equations (70)—(73) together. In a similar way, equations (68) and (69) are combined

to

T
[[ME} ] {u} = {0} (74)

for the Neumann problem. We can easily extract the true eigensolutions;

Do/ W =10} B ol 9} = {0} (i no sum)

=0

ZJM{d)}{!ﬁ} {vi} ={0} oi'{¢;} = {0} (i no sum), (75)

v '//j_sl/
since there exists the same solution (z = {i;}) corresponding to the zero singular values
(6 = oM = 0) by using equations (74) and (75).

According to the relations between the direct method and indirect method (equations
(49)—(52)), we can extend to extract out the true solutions in the indirect method. For the
Dirichlet problem, equation (70) changes to
[U*] (U]
[L*] [T7]

after using equations (49)—(51). By using the SVD technique and equation (76), we have

on{¢,}{¢]} v} =1{0} cU{$;} = {0} (i no sum),

i l/// i

{1} = {0}=4 {1} = {0}, (76)
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ZGT{(P,}{%} {vit = {0} o/ {¢:;} = {0} (i no sum), (77)

i l//, i

where {i;} is an orthonormal basis; o/ and ¢ are the singular values of [U’] and [T7]
matrices, respectively. We can easily extract the true solutions in the Dirichlet problem by
using equation (77) for the zero singular values of ¢V = ¢ = 0.
In a similar way, equation (74) changes to
(L]

[T7]
E {1} = I
(M7 [M7]
after using equations (50)—(52). By using the SVD technique and equation (78), we have

Z«*{r/a}{w,} v} ={0} ot{¢;} = {0} (i no sum),

lﬁ,l//, i

]{t} = {0}, (78)

ZGM{fb,}{l//,} {¥;} ={0} o} {¢;} = {0} (i no sum), (79)

t‘/’/* ij

where {i;} is an orthonormal basis, G] and 6] are the singular values of [L!] and [M]
matrices, respectively. We can easily extract out the true elgensolutlons in the Neumann
problem by using equation (79) for the zero singular values of o = oM = 0.

6.1. EXTRACTING OUT THE TRUE EIGENSOLUTIONS BY USING THE SVD UPDATING TERM
FOR A CIRCULAR CASE

For a circular cavity subject to the Dirichlet boundary condition, we obtain the two
eigenequations

Single-layer approach : J;(kp)J;(kp) =0 (i no sum), (80)

Double-layer approach : J;(kp)Ji(kp) =0 (i no sum). (81)

The true eigensolution J;(kp) = 0 satisfies both equations and the spurious eigensolutions
Ji(kp) = 0 satisfies only one of the equations by using the double-layer potential approach
for the Dirichlet problem.

To obtain an overdetermined system for the Dirchlet problem, we can combine [U’] and
[T!] matrices by using the updating terms,

(82)

4N X2N.

Since the eigensolution is non-trivial, the rank of [C] must be smaller than 2N. Therefore,
the 2N singular values for [C] matrix must have at least one zero value. Based on the
equivalence between the SVD technique and the least-squares method in the mathematical

[
v

Figure 2. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Neumann problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Neumann problem. (¢) The minimum singular value for different wave
numbers by using the SVD updating term [L M} for the Neumann problem. (d) The minimum singular value
for different wave numbers by using the SVD updating document [ U L] for the Neumann problem. (e) The
former three interior modes by using the single-layer potential approach for the Neumann problem. (f) The
former three interior modes by using the double-layer potential approach for the Neumann problem. (g) The
former three analytical interior modes for the Neumann problem.
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essence, we have

[ ("]

= [U'T +[T'T. (83)

For the special case of a circular cavity in the Dirchlet problem, we can decompose [U’]
and [T'] into

(U] = [#] At (2], (84)

(7] = [] e [@]" (85)

where [@] is a modal matrix which can be chosen as either one of the following two
matrices;

r 2 ) 2(N-1) 2N T
1 (elﬁ)o (6*1 ﬁ)o cee e (efl 2N ”)0 (el 2—]\7)0
2 L EUR {2z |
LoEm @ @) @
. 2m 2n . ) 2(N—D)n [ 2Nn
® 1 |1 (e'w)? (e712N)? S (e 72w )? (el 2N )? (56)
1= = ’
V2N | . : : : : : :
. . 2(N—-D)m 2N
1 ( ZN)ZN 2 (—12N)2N 2 : : (e—l N )ZN 2 (e ZNTC)ZN 2
2n IN—1 l271 IN—1 _iu IN—1 [ 2Nn IN—1
@B B L e @B
D, =
. on - (2=
1 cos(#) sin(£%) Do sin (220 -) cos(Z)
4z ‘o (4n : : i (AN =1) 4nN
1 |1 cos(3E) sin(3%) S sin(“55—) cos(35) (87)
V2N
1 cos(? (22}1\\’,72)) sm(2”(22/]VV*2)) sm(“(‘w}?,w*l)) cos(Z4N- 4)(N))
2n(2N— 2n(2N—1 AN-2)(N-1 n(4N-2
1 cos( (211\\’1 ])) sin( 7T(zlzv\/ )) Sm(n( : 2131(N )) cos(* NZN)(N))- INX2N
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By substituting equations (84) and (85) into (83), we obtain
[CricI=[@l]  (Gi+u) |12 (88)

Therefore, we have the singular values of \//1? +u2, £=0,£1,...,£(N —1),N. Only the
true eigenvalues (1, = u, = 0) have dips in the figure of ¢, versus k, i.e., the zeros of
eigensolutions (J;(kp) = 0) are obtained for the Dirichlet problem.

For a circular cavity subject to the Neumann problem, we obtain the two
eigenequations

Single-layer approach : J,(kp)Ji(kp) =0 (i no sum),

Double-layer approach : Ji(kp)Ji(kp) =0 (i no sum). (89)

The true eigensolution J;(kp) = 0 satisfies both equations and the spurious eigensolutions
Ji(kp) = 0 satisfies only one of equations in the single-layer potential approach for the
Neumann problem. We can combine [L!] and [M] matrices by using the updating terms
to obtain an overdetermined system:

(€] =

s (90)

4N x2N

for the Neumann problem. Since the eigensolution is non-trivial and the rank of [C] must
be smaller than 2N. Therefore, the 2N singular values for [C] matrix must have at least one
zero value. Based on the equivalence between the SVD technique and the least-squares
method in the mathematical essence, we have

o '] [ .

o | = (L] + [M1]%. (91)

For the special case of a circular cavity of the Neumann problem, we can decompose [L]
and [M] into

L] = (@] ve [#]", (92)

TABLE 5

The former five exact eigenvalues for a two-dimensional square cavity subject to the Dirichlet
and Neumann boundary conditions

Problem Eigenvalues 1 2 3 4 5

Dirichlet problem kpun = TVm? + n? 4.4429 7-0248 8-8858 9-9346 11-3271
(mn=1,2,3,...)
Neumannproblem Ky = TVm? + n? 3.1416 44429 6-2831 7-0248 8-8858
(myn=0,1,2,3,...)
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[M'] = [@] Ko [@]". (93)
By substituting equations (92) and (91) into equation (91), we obtain
[C1'[C] = [#] (v +x7) [@]". (94)

Therefore, we have the singular values of |/v? + 7, £ =0,=£1,...,4&(N — 1), N. Only the
true eigenvalues (v, = ky = 0) have dips in the figure of o versus k, i.e., the zeros of
eigensolutions (Jj(kp) = 0) are obtained for the Neumann problem.

7. METHOD TO FILTER OUT THE SPURIOUS EIGENSOLUTIONS
Fredholm’s Alternative Theorem

(1) Nonsingular system: The equation [H|{g} = {p} has a unique solution {g} = [H]"'{p}
when the determinant of H is not zero. Besides, the equation has a trivial solution
{g} = {0} if and only if the only continuous solution to the homogeneous equation

[H|{g} = {0}. 95)

(2) Singular system: Alternatively, the equation has at least one solution if the homogeneous
adjoint equation has at least one solution {¢;} such that

[H]T (¢} = {0}, (9)
where [H ]T is the transpose conjugate matrix of [H| [%4]. If the matrix H is real, the
transpose conjugate is equal to transpose only, i.e., [H|' = [H]". Moreover, a necessary
and sufficient solvability condition [25] is that the constraint ({p}'{$,;} = 0) must be
satisfied. Then, the general solution can be written as

N,
{9y = (g} + > e}, 97)
i=1

where {g} is a particular solution and N, is the rank of matrix [H). The c; are arbitrary
constants and {¢;} are bases. Moreover, the particular solution is zero for the interior
eigenproblems. The result implies that spurious eigenvalues are imbedded for both the
Neumann and Dirichlet problems once the numerical method is chosen.

.
Ll

Figure 3. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Dirichlet problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Dirichlet problem. (¢) The minimum singular value for different wave
numbers by using the SVD updating term [ u r } for the Dirichlet problem. (d) The minimum singular value for
different wave numbers by using the SVD updating document [ T M ] for the Dirichlet problem. (¢) The former
three interior modes by using the single-layer potential approach for the Dirichlet problem. (f) The former three
interior modes by using the double-layer potential approach for the Dirichlet problem. (g) The former three
analytical interior modes for the Dirichlet problem.
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By employing the LM formulation in the direct method, we have
LM formulation: [M¥%] {u} = [LF] {t} = {p}. (98)

Hence the eigensolution for 7 is non-trivial, we have ¢; and [LF]"¢$, = {0} such that
equation (98) reduces to

{u"y[MF){¢;} = 0. (99)
Since u is arbitrary for boundary excitation, we have
[M*]'{¢;} = {0}. (100)

According to Fredholm’s alternative theorem in the real-matrix system, we have the
homogeneous solutions in the linear algebraic equation if there exists a vector {¢;} which
satisfies

[LE]T o T E E1] _

or |10 =1{0} or {¢;} [[L*] [MF]]={0}. (101)
[M7]

It indicates that the two matrices have the same spurious mode {¢,} corresponding to the

zero singular value. By using the SVD technique, the two matrices in equation (101) are

decomposed into

(LT = [PHHef] or {LF} =) or{ui e (102)
[ME)T = (MMM or (MFY = o) () e} (103)
J

By substituting equation (103) into equation (101), we have

Zof{Wi}{¢/}T {¢;}={0} —  oF{y;} ={0} (i no sum),

d)['d),»:(i,/

Zafl{l//j}{%}T {p3={0} — a{y;} ={0} (ino sum), (104)
J

d)i'(pj:(;"f
where {¢,} and {y;} are the orthonormal bases, o* and oM are the zero singular values of
[LE] and [M%] matrices respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode {¢;} corresponding to the zero singular
values (¢f = oM = 0).
Similarly, we can employ the UT formulation in the direct method,

UT formulation: [U?] {1} = [T*] {u} = {q}. (105)

Since the eigensolution for u is non-trivial, we have {¢,} and [T£]'{¢,} = {0} such that
equation (105) reduces to

{MHUFT e} =0. (106)

N
Lg8

Figure 4. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Neumann problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Neumann problem. (¢) The minimum singular value for different wave
numbers using the SVD updating term [L M } for the Neumann problem. (d) The minimum singular value for
different wave numbers using the SVD updating document [ U L} for the Neumann problem. (¢) The former
three interior modes by using the single-layer potential approach for the Neumann problem. (f) The former three
interior modes by using the double-layer potential approach for the Neumann problem. (g) The former three
analytical interior modes for the Neumann problem.
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Mode 1 (k=3.140) (True) Mode 1 (k=3.140) (True)

Figure 4. Continued.
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Since {¢} is arbitrary for boundary excitation, we have
(U] {¢:} = {0}. (107)

According to Fredholm’s alternative theorem, we have the homogeneous solutions in
the linear algebraic equation if there exists a vector {¢,;} which satisfies

[UE)
(74"
It indicates that the two matrices have the same spurious boundary mode {¢,;}

corresponding to the zero singular value. By using the SVD technique, equation (108) is
expressed as

{#y =10y or {g}'[[U] [T*]] ={0}. (108)

[UF)" = [#][z)[e]", (109)

[T = [#][=")[@]" (110)
By substituting equation (110) into equation (108), we have

ZG}/{%}{(}";’}T {¢:} =10} ¢,'4T;5y c’{;} = {0} (i no sum),

ZGT{IP Hop) {e) =10} o/ {¥;} ={0} (i no sum), (111)

¢.¢, i

where {¢;} and {y,} are the orthonormal bases, ¢ and ¢! are the zero singular values of
[UE] and [T¥] matrices, respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode {¢;} corresponding to the zero singular
values (¢V = ¢l =0).

According to the relations of the matrices between the direct method and indirect
method (equations (49)—(52)), we can filter out the spurious eigensolutions in the indirect
method by using

LE]" e [Tt
[[ME]]T] Lt “M}]] (6} = {0}, (112)
By employing the SVD technique, we obtain
ZO‘T{l// He}' {e:} = {0} of {¥;} ={0} (i no sum),
¢; tP
ZGM{¢}{¢} {¢:} ={0} i o' {Y;} = {0} (i no sum), (113)

where {¢;} and {i,} are the orthonormal bases, o/ and ¢ are the zero singular values of
[T'] and [M'] matrices, respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode {¢;} corresponding to the zero singular
values (o] = oM =0).

In a similar way, we have the influence matrices by using the indirect method and
equation (108) is transformed to
(U pe_pr | U1
[TE]T {¢l} = {O}W

= {0} 114
Lyt |19 =0 (114)
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By using the SVD technique, we obtain
ZU/U{'/’j}{¢j}T {¢:} =10} bas c’{;} = {0} (i no sum),
J

i /':()ff

Yoo {w e {0} ={0) ey oi{i} ={0} (i no sum), (115)
J RCE

where {¢;} and {y,} are the orthonormal bases, ¢” and ¢ are the singular values of [U’]

and [L'] matrices, respectively. We can easily extract out the eigensolutions since there

exists the same spurious boundary mode {¢,} corresponding to the zero singular values
(G[U = a,-L =0).

7.1. FILTERING OUT THE SPURIOUS EIGENSOLUTIONS BY USING SVD UPDATING
DOCUMENT FOR A CIRCULAR CASE

In solving a circular cavity problem using the double-layer potential approach, we
obtain the eigenequations

Dirichlet problem : J;(kp)Ji(kp) =0 (i no sum), (116)

Neumann problem : J}(kp)Ji(kp) =0 (i no sum). (117)

The spurious eigensolution J(kp) are embedded in both the Dirichlet and the Neumann
problems.

Based on the dual formulation, the [77] and [M'] matrices have the same spurious
eigenvalues. In order to extract the spurious eigenvalues, we can combine the [T7] and
[MT] matrices by using the updating documents,

(D] = [T [M"]] 5 an. (118)
Similarly, we have
T
[[T] [M7] [[[AT;,}]T} = [T+ M. (119)

For the circular cavity, the spurious eigenvalues are both embedded in the transposes
of [T'] and [M'] matrices according to equations (11)—(14). The singular values for [D]
must have at least one zero singular value. To determine the singular values for [D], we
have

[D[D])" = (9] (w +17) [@]". (120)

By plotting the minimum singular values of y/p2 + 2, ¢ =0,%+1,...,£(N — 1), N versus
k, we can filter out the spurious eigenvalues (v, = k, = 0) where dips occur, i.c., the zeros

of eigensolutions (Jj(kp) = 0) are obtained by using the double-layer potential approach.
In solving a circular cavity by using the single-layer potential approach, we obtain

Dirichlet problem: J;(kp)J;,(kp) =0 (i no sum), (121)

Neumann problem: J;(kp)Ji(kp) =0 (i no sum). (122)
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The spurious eigensolution J;(kp) are embedded in both the Dirichlet and the Neumann
problems.

In a similar way, we can combine the [U’] and [L!] matrices by using the updating
documents,

D)= [[U"] [L1] (123)

2N x4N.
Similarly, we have

[0 L) ) =+ L (124)

For the special case of a circular cavity, the spurious eigenvalues are embedded in the
transpose of [U’] and [L!] matrices according to equations (11)—~(14). The singular values
for [D] must have at least one zero singular value. To determine the singular values for [D],
we have

[D][D]" = (@] (47 +v) [@]". (125)

By plotting the minimum singular values of \/Afg +v3, £=0,£1,...,£(N — 1), N versus
k, we can filter out the spurious eigenvalues (4, = v, = 0) where dips occur, i.e., the zeros
of eigensolutions (J;(kp) = 0) are obtained.

All the relations between the direct and indirect methods are shown in Table 2. We can
easily extract out the true and spurious eigenvalues in the indirect method or the direct
method by using the SVD updating terms and documents.

8. NUMERICAL RESULTS AND DISCUSSIONS

Case 1: Circular cavity (Dirichlet case). A circular cavity with a radius (p = 1 m)
subjected to the Dirichlet boundary condition (# = 0) is considered. In this case, an
analytical solution is available as follows:

Eigenequation:

Jn(knp) =0, mn=0,1,2,3... .
Eigenmode:
u(a,0) = J,(kya)e™, 0<a<p, 0<0<2m, mn=0,1,2,3,... .

By collocating 10 nodes on the circular boundary, two results by using the single- and
double-layer potential approaches are obtained. The exact eigenvalues of a circular cavity
subject to the Dirichlet boundary condition are shown in Table 3. Figure 1(a) shows the
minimum singular value versus k using the single-layer potential approach. The former
four true eigenvalues are obtained as shown in Figure 1(a) by considering the near zero
minimum singular values if only the single-layer potential method is chosen. Figure 1(b)
shows the minimum singular value versus k using the double-layer potential approach.
The true eigenvalues occur at the positions of zeros for J,,(k,p) while the spurious
eigenvalues occur at the positions of zeros for J) (k,p) if the double-layer approach is
chosen. In order to extract out the true eigenvalues, we can combine the [U’] and [T7] by
using the SVD updating term. The minimum singular value versus & is shown in Figure
1(c), it is found that dips occur only at the positions of true eigenvalues. In a similar way,
we can combine the [T7] and [M!] by using the SVD updating document in order to filter
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out the spurious eigenvalues. The minimum singular value versus k is shown in Figure
1(d), it is found that the dips occur only at the positions of spurious eigenvalues. The first
three interior modes obtained by using the single- and double-layer potential approaches
are shown in Figures 1(¢) and 1(f), and are compared well with the analytical modes in
Figure 1(g). It is observed that the nodal line can rotate in case of the eigenvalue of
multiplicity more than one. There are two independent eigenmodes with respect to the
same eigenvalue. The two modes can be linearly combined by any constants and can differ
by the phase lag. This is the reason why the one mode can be rotated to another mode. A
similar explanation can also be found in Reference [26]. It is also found that the result of
case 1 in Figure 1(e) does not match the analytical solution very well. The reason is that
the amplitudes of the modes are very small since they are multiplied by a near-zero value.
However, the nodal line can be identified. To demonstrate this point, the exact solutions
for the mode using the present method are shown to have the near-zero solutions in
Table 4. The near-zero solutions are present if the single-layer approach was applied to
solve the Dirichlet problem.

Case 2: Circular cavity (Neumann case). A circular cavity with a radius (p = 1 m)
subjected to the Neumann boundary condition (¢ =0) is considered. In this case, an
analytical solution is available as follows:

Eigenequation:

I (knp) =0, mn=0,1,2,3... .
Eigenmode:
u(a,0) = Jm(kna)ei'”(’, 0<a<p, 0<0<2n, myn=20,1,2,3,... .

By collocating 10 nodes on the circular boundary, two results by using the single- and
double-layer potential approaches are obtained. The exact eigenvalues of a circular cavity
subject to the Neumann boundary condition are shown in Table 3. Figure 2(a) shows the
minimum singular value versus k using the single-layer potential approach. The former
four true eigenvalues are obtained as shown in Figrue 2(a) by considering the near-zero
minimum singular values if only the single-layer potential method is chosen. Figure 2(b)
shows the minimum singular value versus k using the double-layer potential approach.
The true eigenvalues occur at the positions of zeros for J (k,p) while the spurious
eigenvalues occur at the positions of zeros for J,,(k,p) if the double-layer approach is
chosen. In order to extract out the true eigenvalues, we combine the [L!] and [M'] by using
the SVD updating term. The minimum singular value versus & is shown in Figure 2(c), it is
found that the dips occur only at the positions of true eigenvalues. In a similar way, we
combine the [U’] and [L!] by using the SVD updating document in order to filter out the
spurious eigenvalues. The minimum singular value versus k is shown in Figure 2(d), it is
found that the dips occur only at the positions of spurious eigenvalues. The first three
interior modes obtained by using the single- and double-layer potential approaches are
shown in Figure 2(¢) and Figure 2(f), and are compared well with the analytical modes in
Figrue 2(g) for the nodal lines. It is found that the nodal line can rotate in case of the
eigenvalue of multiplicity more than one. There are two independent eigenmodes with
respect to the same eigenvalue. The two modes can be linearly combined by any constants
and can differ by the phase lag. This is the reason why the one mode can be rotated to
another mode. A similar explanation can also be found in Reference [26]. It is also found
that the result of case 2 in Figure 2(f) does not match the analytical solution very well. The
reason is that the amplitudes of the modes are very small since they are multiplied by a
near-zero value. However, the nodal line can be identified. To demonstrate this point, the
exact solutions for the mode using the present method are shown to have the near-zero
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solutions in Table 4. The near-zero solutions are present if the double-layer approach was
applied to solve the Neumann problem.

Case 3: Square cavity (Dirichlet case). A square cavity with each side of a unit length
(L = 1) subjected to the Dirichlet boundary condition (z = 0) is considered. In this case,
an analytical solution is available as follows:

Eigenvalues:

2 2
Kimn = (T) “r(ﬁ) T, mn=1273....
Eigenmode:

. (MTX\ . (NAX
sm( 17 )sm( 17 ), mn=1,2,3,... .

By collocating 12 nodes on the boundary, two results by using the single- and double-
layer potential approaches are obtained. The exact eigenvalues of a square cavity subject
to the Dirichlet boundary condition are shown in Table 5. Figure 3(a) shows the minimum
singular value versus k using the single-layer potential approach. The former four true
eigenvalues are obtained as shown in Figure 3(a) by considering the near-zero minimum
singular values if only the single-layer potential method is chosen. Figure 3(b) shows the
minimum singular value versus k using the double-layer potential approach. The true

eigenvalues occur at the positions of k,, = (m/L)2 + (n/L)2 while the spurious
eigenvalues occur if the double-layer approach is chosen. In order to extract out the
true eigenvalues, we combine the [U’] and [T/] by using the SVD updating term. The
minimum singular value versus k is shown in Figure 3(¢c), it is found that the dips occur
only at the positions of true eigenvalues. In a similar way, we combine the [T7] and [M] by
using the SVD updating document in order to filter out the spurious eigenvalues. The
minimum singular value versus k is shown in Figure 3(d), it is found that the dips occur
only at the positions of spurious eigenvalues. The first three interior modes using the
single- and double-layer approaches are shown in Figure 3(e) and Figure 3(f) and are
compared with analytical modes in Figure 3(g). For the eigenvalue of multiplicity more
than one, some discrepancy for the nodal line is found since the eigensolution can be
superimposed by two independent eigensolutions of the same eigenvalue.

Case 4: Square cavity (Neumann case). A square cavity with each side of a unit length
(L = 1) subjected to the Neumann boundary condition (¢ = 0) is considered. In this case,
an analytical solution is available as follows:

Eigenvalues:

Ky = (T)z—l—(%)zn, mn=20,1,2,3,... .

Eigenmode:

mnx nmx
cos( 7 )cos( 17 ), mn=20,1,23,... .

By collocating 12 nodes on the boundary, two results by using the single- and double-
layer approaches are obtained. The exact eigenvalues of a square cavity subject to the
Neumann boundary condition are shown in Table 5. Figure 4(a) shows the minimum
singular value versus k using the single-layer potential approach. The former four true
eigenvalues are obtained as shown in Figure 4(a) by considering the near-zero minimum
singular values if only the single-layer potential method is chosen. Figure 4(b) shows the
minimum singular value versus k using the double-layer potential approach. The true



TABLE 6

The true and spurious eigenvalues for circular and square cavities using the single- and double-layer potential approaches

Boundary-value problem Eigensolution

Circular cavity

Square cavity

Single-layer

Double-layer

Single-layer potential

Double-layer potential

potential potential approach approach
approach approach
Dirichlet problem True eigensolution Ju(kp) =0 Jn(kp) =0 /
(Figure 1(a)) (Figure 1(b)) (m,n=1,2,3,. (mn=1,2,3,...)

Spurious eigensolution

True eigensolution

Neumann problem

Spurious eigensolution

Ju(kp) =0

(Figure 1(a))

I, (kp) =0

(Figure 2(a))

In(kp) =0

(Figure 2(a))

m(kp) =0

(Figure 1(b))

lﬂ(kp) - O

(Figure 2(b))

1, (kp) =0

(Figure 2(b))
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(Figure 3(a))

(Figure 4(a))
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(Figure 4(a))
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(Figure 4(b))
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eigenvalues occur at the positions of Ky, = 1\/(m/L)* + (n/L)* while the spurious

eigenvalues occur if the double-layer approach is chosen. In order to extract out the
true eigenvalues, we combine the [L/] and [M'] by using the SVD updating term. The
minimum singular value versus k is shown in Figure 4(c), it is found that the dips occur
only at the positions of true eigenvalues. In a similar way, we combine the [U’] and [L!] by
using the SVD updating document in order to filter out the spurious eigenvalues. The
minimum singular value versus k is shown in Figure 4(d), it is found that the dips occur
only at the positions of spurious eigenvalues. The former three interior modes for the
single- and double-layer potential approaches are shown in Figure 4(e) and Figure 4(f),
and are compared with the analytical modes in Figure 4(g). For the ecigenvalue of
multiplicity more than one, some discrepancy for the nodal line is found since the
eigensolution can be superimposed by two independent eigensolutions of the same
eigenvalue.

9. CONCLUSIONS

We have developed a new meshless method by using the imaginary-part kernel. The
imaginary part in the complex-valued fundamental solution was chosen as a radial basis
function to approximate the solution. Although this method is very simple by using only
two-point function for the influence matrices, it results in spurious eigensolutions as shown
in Table 6. Two approaches, the SVD updating terms and updating documents in
conjunction with dual formulation, were proposed to extract out the true eigensolutions
and to filter out the spurious eigensolutions, respectively, as shown in Table 2. Both cases,
circular and square cavities, subject to the Dirichlet and the Neumann boundary
conditions, were demonstrated to check the validity of the meshless formulation.
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