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Abstract

In the previous papers [14-17], we have constructed mechanical quadra-
ture methods for solving the boundary integral equations of the �rst kind.
The methods possess high accuracy O(h30) and low computing complexi-
ties, where h0 = max1�m�d hm and hm (m = 1; :::; d) is the mesh witdth
of the corresponding to curved edge �m, because the generation of dis-
crete matrix need not calculate any singular integrals. This paper aims
at exploring the stability analysis based on the e¤ective condition num-
ber (Cond�e¤) and the condition number (Cond.). We �rst propose the
new computational formulas for the e¤ective condition number, and then
estimate the upper and lower bounds of eigenvalues of the discrete matrix
Kh. Moreover, we derive that Cond. = O(h�1) and Cond�e¤ = O(h�1):
Both Cond. and Cond�e¤ display an excellent stability of the numerical
methods. Hence, we conclude that mechanical quadrature methods pro-
vide not only high accuracy algorithms O(h3); but also excellent stability.
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Numerical experiments are reported to support the stability analysis and
the error estimates.

Keyword. Stability analysis, condition number, e¤ective condition number,
boundary integral equation, mechanical quadrature method.

1 Introduction

Consider the linear algebraic equations Khx = b resulting from the �rst kind
boundary integral equations (BIEs) of Laplace�s equation by mechanical quadra-
ture methods (MQM), where Kh is nonsingular and symmetric. The condition
number is de�ned by Cond=j�1j=j�nj; where j�1j and j�nj are the maximal and
the minimal values of j�ij (i = 1; :::; n); respectively, and �i are the eigenval-
ues of matrix Kh 2 Rn�n. The de�nition of condition number was given in
Wilkinson [25], and then used in many books and papers, see Atkinson [1] and
[3], Golub and van Loan [11] and Parlett [19]. The condition number is used
to provide bounds of relative errors from the perturbation of both Kh and b.
However, in practical applications, the true relative errors may be smaller, or
even much smaller than the worst Cond. Such a case was �rst studied in Chan
and Foulser [4], Christiansen and Hansen [7], Christiansen and Saranen [8], and
Huang and Li [13] recently, and is called the e¤ective condition number. In
this paper, we propose the computational formulas for the e¤ective condition
number (Cond�e¤).
MQMs possess high accuracy O(h30) and low computing complexities

[14�17];
where h0 = max1�m�d hm and hm (m = 1; :::; d) is the mesh width of the
corresponding to curved edge �m. The generation of discrete matrix Kh need
not calculate any singular integrals. Especially, for concave polygons 
, the
solution at a concave corner point of @
 has singularities, which heavily dampen
the accuracy of numerical solutions. The accuracy of Galerkin methods[23;24] is
only O(h1+") (0 < " < 1) and the accuracy of collocation methods (CMs)[27] is
even lower. In contrast, the accuracy of MQMs is as high as O(h30): In addition,
the CMs[27] are greatly restricted in practice, since the interior angle � of 
 can
only be in � 2 (29:850; 330:150): Moreover, for MQMs, by extrapolations and
splitting extrapolations (SEMs), the higher precision of numerical solutions and
a posteriori error estimates can be achieved. In fact, the quadrature method was
�rst proposed for an integral equation with a logarithmic kernel in Christiansen
[6] in 1971, called the modi�ed quadrature method, and its analysis was given
in Saranen [20], to yield the O(h2) convergence rate. In [14-17], we propose the
new quadrature methods called the MQMs, to yield the high O(h30) convergence
rate.
The stability is a severe issue for numerical solutions of the �rst kind BIEs.

Although the stability analysis for the modi�ed quadrature method was given
in [7,8], it is important to provide stability analysis for the new MQMs. In
this paper, the e¤ective condition number is applied to the �rst kind BIEs
for Laplace�s equation on arbitrary plane domains by MQMs, and the bounds
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of Cond�e¤ and Cond are derived in detail. We obtain that Cond.=O(�h�1)
and Cond�e¤=O(�h�1); which display an excellent stability of MQMs, where
�h = min1�m�d hm (m = 1; :::; d).
This paper is organized as follows. In next section, the e¤ective condition

number and its computational formulas are introduced. In Section 3, the bounds
of Cond�e¤ and Cond. are derived for the typical BIEs of the �rst kind. In
Sections 4 and 5, the stability analysis based on Cond�e¤ and Cond is made for
closed smooth curves �; curved polygons � and open contours �. In Section 6,
an analysis and comparisons are made for Cond�e¤ and Cond., and in Section
7, some numerical examples are reported to support the stability analysis, and
numerical results show the signi�cance of MQMs. In the last section, a few
remarks are made.

2 E¤ective Condition Number

Consider the linear algebraic equations

Khx = b; (2.1)

where the x 2 Rn and b 2 Rn are the unknown and known vectors, respectively.
The condition number is de�ned by

Cond: = j�1j=j�nj; (2.2)

where �i (i = 1; :::; n) are the singular values of matrix Kh 2 Rn�n in the
descending order in magnitude: j�1j � ::: � j�nj > 0: When there occurs a
perturbation of b or Kh, the errors of x also exist as

Kh(x+�x) = b+�b: (2.3)

The values of Cond. are used to measure the relative errors of x; given by

jj�xjj
jjxjj � cond. jj�bjjjjbjj ; (2.4)

where jjxjj is the Euclidean norm and the matrix norm jjKhjj = supx6=0
jjKxjj
jjxjj .

Note that the equality of (2.4) occurs only at very rare cases. In practical
applications, the vector b varies within a certain region, and the true relative
errors from the perturbation of b or Kh may be smaller, or even much smaller
than Cond. given in (2.2).
Below we brie�y provide the algorithms for the e¤ective condition number.

Details are given in [13]. Let the matrix Kh 2 Rn�n be real symmetric. The
eigenvectors ui satisfy Khui = �iui; where fuig are orthogonal, with

uTi uj = �ij ; (2.5)
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where �ij = 1 if i = j and �ij = 0 if i 6= j: In [7,11] the e¤ective condition
number is de�ned by

Cond�e¤=
jjbjj

j�njjjxjj
=

1

j�nj
jjbjjvuut nX
i=1

�2i
�2i

: (2.6)

where �i = u
T
i b:

3 The typical BIE of the �rst kind

3.1 Description of Algorithms

We have constructed the MQMs for solving[14�17]:

Av = f; (3.1)

where the unknown v(t) and known f(t) are smooth periodic functions on [0;
2�) with the period 2�; and the boundary integral operator A is de�ned by

(Av)(t) =

Z 2�

0

a(t; �)v(�)d� ; t 2 [0; 2�] (3.2)

with the integral kernel a(t; �) = � 1
2� ln j2e

�1=2 sin t��2 j:
Let f� j = jh; h = 2�=n; n 2 N; j = 1; :::; ng be the mesh set. Using the

quadrature rules[21]; we construct its Nyström approximate operator:

(Ahv)(t) = h
nX

j=1;t6=�j

a(t; � j)v(� j)�
1

2�
ln(
e�1=2h

2�
)v(t)h; (3.3)

and

En(A) = 2
l�1X
�=1

1

(2�)!
�0(�2�)v(2�)(t)h2�+1 +O(h2l); as h! 0; (3.4)

where En(A) = (Ahv)(t) � (Av)(t), and v 2 ~C2l[0; 2�] = fv(t)jv(�)(t) 2
C[0; 2�]; and v(�)(t + 2�) = v(�)(t); � = 0; 1 ; :::; 2lg: In (3.4) �(t) is the Rie-
mann zeta function. Using quadrature rules (3.3), we obtain the linear algebraic
equations

(Ahvh)(ti) = f(ti); i = 1; :::; n: (3.5)

In [17] we have proved that there exist the unique solutions for (3.5) such
that jvh(ti)�v(ti)j = O(h3) (i = 1; :::; n) as v(t) 2 ~C4[0; 2�]: Moreover, we have
derived in [17]

v(t)� vh(t) =
2X

�=1

w�(t)h
2�+1 +O(h6); t 2 ftig; as v(t) 2 ~C6[0; 2�];
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where w�(t) 2 ~C[0; 2�] (� = 1; 2) are independent of h; and vh(t) and v(t) are
the solutions of (3.5) and (3.1) at t = tj respectively. Hence, for MQMs, the
superconvergence O(h6) can be achieved by Richardson�s extrapolations[17].

3.2 Condition number

From (3.2), (3.3) and (3.5), we obtain that the discrete matrix Ah is a real
symmetric matrix. In the subsection we will derive the upper and the lower
bounds of the eigenvalues �i (i = 0; 1; :::; n � 1) of Ah. First we give two
Lemmas.
Lemma 3.1. Let n be an arbitrary positive integer number. Then

�n�1j=1 sin
j(
j�

n
) =

nn=2

2n(n�1)=2
: (3.6)

Especially, when n = 2k;

�k�1j=1 sin
j�

2k
=

p
k

2k�1
; (3.7)

and when n = 2k � 1;

�k�1j=1 sin
j�

2k � 1 =
p
2k � 1
2k�1

: (3.8)

Proof. Let wk = e2k�i=n and �wk = e
�2k�i=n (k = 0; 1; :::; n � 1) be a pair

of conjugate complex numbers. Denote

V =

����������
1 1 ... 1 1
w0 w1 ... wn�2 wn�1
w20 w21 ... w2n�2 w2n�1
... ... ... ... ...
wn�10 wn�11 ... wn�1n�2 wn�1n�1

����������
; �V =

����������
1 1 ... 1 1
�w0 �w1 ... �wn�2 �wn�1
�w20 �w21 ... �w2n�2 �w2n�1
... ... ... ... ...
�wn�10 �wn�11 ... �wn�1n�2 �wn�1n�1

����������
:

Using the principal character of Vandermode determinants, we have

V �V = �0�j<k�n�1(wk � wj)�0�j<k�n�1( �wk � �wj)

= �0�j<k�n�1(2� 2 cos(
2(k � j)�

n
)) = �0�j<k�n�1(2 sin(

(k � j)�
n

))2: (3.9)

Based on the product rule of determinants, we obtain

(V �V )(k+1;j+1) = w
k
0 � 1 + wk1 � �wj + :::+ wkn�1 � �wn�1j

= 1 + e
2(k�j)�i

n + e
4(k�j)�i

n + :::+ e
2(n�)(k�j)�i

n

=

�
n; as k = j;
0; as k 6= j;
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where (V �V )(k+1;j+1) is the entry at the (k+1)th row and the (j+1)th column
of the determinant V �V : Hence

V �V = nn: (3.10)

From (3.9) and (3.10), we have

�0�j<k�n�1(2 sin(
(k � j)�

n
)) = n

n
2 :

Since sin (n�k)�n = sin k�n (k = 1; :::; n� 1); we conclude

�n�1j=1 sin
j(
j�

n
) =

nn=2

2n(n�1)=2
:

This is the �rst result (3.6). Especially, when n = 2k; since

�2k�1j=1 sinj(
j�

2k
) = [�k�1j=1 sin(

j�

2k
)]2k =

(2k)k

2k(2k�1)
;

we have

�k�1j=1 sin
j�

2k
=

p
k

2k�1
:

Also when n = 2k � 1; since sin j�
2k�1 = sin(

(2k�1�j)�
2k�1 ) and

�2k�2j=1 sinj(
j�

2k � 1) = [�
k�1
j=1 sin(

j�

2k � 1)]
2k�1 =

(2k � 1) 2k�12

2(k�1)(2k�1)
;

we have

�k�1j=1 sin
j�

2k � 1 =
p
2k � 1
2k�1

;

and complete the proof of Lemma 3.1.
Lemma 3.2. Let �i be the eigenvalues of discrete real symmetric matrix

Ah. Then there exist two positive constant c1 and c2 independent of h such
that

c1 = �0 > �1 > ::: > �n�1 � c2h: (3.11)

Proof. From (3.2) and (3.3), we conclude that Ah is a circular matrix and
consists of the entries:(

a0 =
�h
2� ln j

e�1=2h
2� j;

aj =
�h
2� ln j2e

�1=2 sin jh2 j; j = 1; :::; n� 1:

Moreover, based on the theory of circular matrix[9], eigenvalues �k of matrix Ah
can be expressed by

�k =

n�1X
j=0

aj"
j
k; k = 0; :::; n� 1; and "k = exp(2k�i=n); i =

p
�1:
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Firstly, consider the maximal eigenvalue

�0 =
�h
2�
[ln je

�1=2h

2�
j+

n�1X
j=1

ln j2e�1=2 sin jh
2
j]:

Based on Lemma 3.1, there exist the following equalities

2m�1X
j=1

ln j2 sin j�
2m
j =

m�1X
j=1

ln j2 sin j�
2m
j+

2m�1X
j=m+1

ln j2 sin j�
2m
j+ ln 2

= 2 ln
p
m+ ln 2 = lnn; as n = 2m;

and

2mX
j=1

ln j2 sin j�

2m+ 1
j =

mX
j=1

ln j2 sin j�

2m+ 1
j+

2mX
j=m+1

ln j2 sin j�

2m+ 1
j

= 2 ln
p
2m+ 1 = lnn; as n = 2m+ 1;

to give

�0 = �
1

n
[� lnn� n

2
+ lnn] =

1

2
:

This gives the upper bound in (3.11). Secondly, consider �k (k = 1; :::; n � 1);
i.e.,

�k =
�h
2�
[ln je

�1=2h

2�
j+

n�1X
j=1

cos
2k�j

2n
ln j2e�1=2 sin j�

n
j]

=
�1
n
[
�1
2
� lnn� 1

2

n�1X
j=1

cos
2k�j

2n
+
n�1X
j=1

cos
2k�j

2n
ln j2 sin j�

n
j]

=
�1
n
[� lnn+

n�1X
j=1

ln j2 sin �j
n
j �

n�1X
j=1

sin2
k�j

n
ln j2 sin j�

n
j]

=
1

n
lnn� 1

2n
lnn+

1

2n

n�1X
j=1

sin2
k�j

n
ln j2 sin j�

n
j:

Using the remainder expression of Euler-Maclaurin�s formula[10] yields

�k =
1

n

n�1X
j=1

sin2
k�j

n
ln j2 sin j�

n
j =

Z 1

0

sin2 k�x ln j2 sin�xjdx+O(h2k+1)

=
1

2

Z 1

0

ln j2 sin�xjdx� 1
2

Z 1

0

cos(2k�x) ln j2 sin�xjdx+O(h2k+1)

=
1

2
ln 2+

1

2

Z 1

0

ln j sin�xjdx� 1
2

Z 1

0

cos(2k�x)[�
1X
p=1

1

p
cos(2p�x)]dx+O(h2k+1)
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=
1

4k
+O(h2k+1) >

1

4k
+O(h2k+1) >

1

4n
+O(h2k+1) = c2h:

This gives the lower bound in (3.11), and completes the proof of Lemma 3.2.
Based on Lemma 3.2 and (2.2), we obtain the following theorem immediately.
Theorem 3.3. Let Ah be the discrete real symmetric matrix Ah in (3.5)

de�ned by the quadrature rules (3.3). Then the condition number of Ah has
the bound

Cond: = O(h�1): (3.12)

3.3 E¤ective condition number

Based on the de�nition of e¤ective condition number (2.6), we need estimate
the upper bound of known vector b =(f(t1); :::; f(tn))T and the lower bound
of unknown vector x =(vh(t1); ..., vh(tn))T in 2-norm. From [17]; when the
solution v(t) 2 ~C4[0; 2�] of (3.1), we have jvh(ti)� v(ti)j = O(h3) (i = 1; :::; n);
which implies that there exist two positive constants c1 and c2 independent of
h such that

c1 � jvh(ti)j � c2; i = 1; :::; n:

Hence, the solution vector x =(vh(t1); ..., vh(tn))T satis�es

~c1h
�0:5 = c1

p
n � jjxjj = f

nX
i=1

jvh(ti)j2g1=2 � c2
p
n = ~c2h

�0:5; (3.13)

where ~c1 =
p
2�c1 and ~c2 =

p
2�c2: Next, we derive the upper bound of known

vector b = (f(t1); ..., f(tn))T : From [2,23,26], if v(t) 2 ~Ck[0; 2�]; then f(t) 2
~Ck+1[0; 2�]: Based on the theory of circular matrix[9]; there exists an unitary
matrix U such that

UAhU
T = diag(�0; ..., �n�1):

From the principal character of unitary matrix U; we have[5;12]

jjbjj2=
q
(�

n
i=1�

2
i ) = jjUbjj2 = f

nX
j=1

[f(tj)]
2g1=2

= h�0:5f
nX
j=1

h[f(tj)]
2g1=2 ' h�0:5f

2�Z
0

f2(t)dtg1=2 = O(h�0:5): (3.14)

From (2.6), (3.11), (3.13) and (3.14), we obtain the bound of e¤ective condition
number immediately described in the following theorem.
Theorem 3.4. Let Ah be the discrete real symmetric matrix Ah in (3.5) by

the quadrature rule (3.3). Then the e¤ective condition number has the bound

Cond�e¤=
jjbjj
�njjxjj

= O(h�1): (3.15)
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4 Stability analysis for closed smooth curve �

4.1 Description of numerical methods

By the layer potential theory, Dirichlet�s problems of Laplace�s equation:�
�u = 0; in 
;

u = f; on � = @
;
(4.1)

are converted into the �rst kind BIEs[2;23]

� 1

2�

Z
�

v(x) ln jx� yjdsx = f(y); y 2 �; (4.2)

where 
 � R2 is a bounded domain with a closed smooth edge �, and jx� yj =
f(x1 � y1)2 + (x2 � y2)2g1=2: In (4.2) the unknown function v(x) = @u(x)

@�� �
@u(x)
@�+ ; where � is a unit outward normal at a point x 2 �. From the known
results[2;23;27]; when the logarithmic capacity (trans�nite diameter) C� 6= 1;
there exists a unique solution of (4.2). As soon as v(x) is solved from (4.2), the
solutions of (4.1) at interior or exterior points can be calculated by

u(y) = � 1

2�

Z
�

v(x) ln jx� yjdsx; y 2 R2n�:

Assume that C� 6= 1 and � can be described by the parameter mapping x(t) =
(x1(t); x2(t)) 2 ~Cl[0; 2�] : [0; 2�) ! � with

�� � jx
0
(t)j2 = jx

0

1(t)j2 + jx
0

2(t)j2 � �̂ > 0;

where �� and �̂ are two constants. De�ne the boundary integral operator

(Kv)(t) =

Z 2�

0

k(t; �)v(�)d� ; t 2 [0; 2�); (4.3)

where k(t; �) = � 1
2� ln jx(t) � x(�)j and v(t) = v(x(t))jx

0
(t)j: Then Eq (4.2) is

converted into
Kv = Av +Bv = f; (4.4)

where B = K�A and (Bv)(t) =
R 2�
0
b(t; �)v(�)d� with

b(t; �) =

(
- 12� ln j

e1=2(x(t)�x(�))
2 sin((t��)=2) j; for t� � 6= 2�Z;

- 12� ln je
1=2x0(t)j; for t� � = 2�Z;

where Z =f0;�1;�2; ...}.
Using the trapezoidal or midpoint rule[10], we obtain the Nyström�s approx-

imate operator Bh of B

(Bhv)(t) =
nX

�j 6=t;j=1
hb(t; � j)v(� j) +

�h
2�

ln je1=2x0(t)jv(t): (4.5)
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Hence we get the approximate equations of (4.4)

Ahvh(ti) +Bhvh(ti) = f(ti); i = 1; :::; n: (4.6)

Lemma 4.1[17]. Let � (C� 6= 1) be an arbitrarily closed smooth curve.
Assume that v(t) is 6 times di¤erentiable on [0; 2�]. Assume also that k(t; �)v(�)
is periodic with the period 2�; and that they are 6 times di¤erentiable on {-
1;1gnft+ 2�m}1m=�1. Then we have the following:
(1) There exists a unique solution in (4.6) and

jvh(ti)� v(ti)j = O(h3); i = 1; :::; n:

(2) There exist the functions w�(t) 2 ~C[0; 2�] (� = 1; 2) independent of h such
that

v(t)� vh(t) =
2X

�=1

w�(t)h
2�+1 +O(h6); t 2 ftig;

where vh(t) and v(t) are the solutions of (4.6) and (4.4) at t = tj ; respectively.
Lemma 4.1 implies that for the closed smooth curve � with C� 6= 1; the

superconvergence O(h6) can also be achieved by Richardson�s extrapolations.

4.2 Condition number

From (3.2), (3.3), (3.5), (4.4) and (4.5) we obtain that the discrete matrix Ah

and Bh all are real symmetric matrices. Now we also estimate the upper and
the lower bounds of eigenvalues j�ij (i = 0; 1; :::; n � 1) of Kk = Ah+Bh: We
�rst cite the following known results[12].
Lemma 4.2. (1) De�ne jDj = [jdij j] for any matrix D = [dij ]; then its

spectral radius satis�es �(D) � �(jDj): (2) If jDj � C; then �(D) � �(C): (3) If
the diagonal matrix D � 0 and the matrix C � 0 with Re�i(D�C) > 0; and
if the matrix jM1j � D and jM2j � C; then we conclude that (a)M1�M2 is a
nonsingular matrix, (b) j(M1�M2)

�1j � (D�C)�1 and (3) jdet(M1�M2)j �
det(D�C):
Lemma 4.3. Let � (C� 6= 1) be an arbitrarily closed smooth curve. Assume

thatAh andBh are the discrete matrices de�ned by (3.3) and (4.6), respectively.
Then the eigenvalues j�ij (i = 0; 1; :::; n � 1) of discrete matrix Kh= Ah+Bh
satisfy

�c � j�ij � ĉh�1; i = 0; 1; :::; n� 1; (4.7)

where �c and ĉ are two positive constants independent of h:
Proof. From (3.5), (4.3), (4.5) and (4.6), discrete matrices Ah and Bh are

real symmetric matrices, and their diagonal entries are aii= a0 = � h
2� ln j

e�1=2h
2� j

and bii = � h
2� ln je

1=2x0(ti)j; respectively. Two cases are discussed.
Case I. When 1 � e1=2�� � e1=2jx0(t)j � e1=2�̂ > 0; we choose � = a0 + c0;

where c0 = � h
2� ln(e

1=2��) � 0: Let D =diag(�; ..., �) and C = [ c0n ]
n
i;j=1:
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Obviously, the matrixD�C is a circular matrix[10]. From the theory of circular
matrix, the eigenvalues ��k of matrix D�C are given by

��k = ((a0+c0)�
c0
n
)�

n�1X
j=1

c0
n
"jk; k = 0; :::; n�1 and "k = exp(2k�i=n); i =

p
�1:

Hence, by some manipulations we have

��k =

�
1
2n +

1
n lnn � ch; as k = 0;

1
2n +

1
n lnn�

1
n ln(e

1=2��) � ch; as k = 1; :::; n� 1;

where c is a positive constant number independent of n:
Case II. When e1=2�� � e1=2jx0(t)j � e1=2�̂ � 1; we choose � = a0�c0; where

c0 =
h
2� ln(e

1=2��) � 0: Let D =diag(�; ..., �) and C = [ c0n ]
n
i;j=1: Eigenvalues ��k

of matrix D�C are given by

��k = ((a0 � c0)�
c0
n
)�

n�1X
j=1

c0
n
"jk

=

�
1
2n +

1
n lnn� 2c0; as k = 0;

1
2n +

1
n lnn� c0; as k = 1; :::; n� 1;

where k = 0; :::; n � 1; and "k = exp(2k�i=n); i =
p
�1: Since �� is a bounded

positive number, there always exists a positive integer number n0 such that
n � n0 � (e1=2��)2 � 1: Hence, when n � n0 we have ��k � ch; where c is a
positive constant number independent of n:
Denote M1 = Kh= Ah+Bh and M2 = [0]ni;j=1: Obviously, jM1j � D;

jM2j � C and Kh = M1�M2: Since Re ��i(D�C) = ch and Lemma 4.2,
Kh=M1�M2 is invertible and

0 < j��i(K�1
h )j � �(K�1

h ) � �(jK�1
h j)

� �((D�C)�1) � ch�1;
i.e.,

j��i(Kh)j � (�((D�C)�1))�1 � ch; i = 0; :::; n� 1:
This is the lower bound of j�ij in (4.7).
Next, we derive the upper bound of eigenvalues j�ij of Kh= Ah+Bh: From

[12] we have �(Kh) = �(Ah+Bh) � �(Ah)+�(Bh): Moreover, from Lemma 3.2
we obtain �(Ah) = c1; and from [12] we obtain �(Bh) � c2; where c1 and c2 are
two positive constants. Hence, �(Kh) � c1 + c2 and the upper bound of j�ij in
(4.7) follows. This completes the proof of Lemma 4.3.
Based on Lemma 4.3, we have the following theorem.
Theorem 4.4. Let � (C� 6= 1) be an arbitrarily closed smooth curve.

Assume that Ah and Bh are the discrete real symmetric matrices de�ned by
(3.3) and (4.5), respectively. Then the condition number for (4.6) has the bound

Cond:(Kh) = O(h
�1): (4.8)
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4.3 E¤ective condition number

Since Kh is a real symmetric matrix from (3.5), (4.3) and (4.6), there exists the
unitary matrix U such that[5;19]

UKhU
T = diag(�1; :::; �n):

From the known results of [2,23,27]; f(t) (t 2 [0; 2�]) is smoother than v(t):
Hence, we have for (4.6)

jjbjj = f�ni�1jf(ti)j2g1=2

= h�0:5f�ni�1hjf(ti)j2g1=2 ' h�0:5f
2�Z
0

f2(t)dtg1=2 � ch�0:5; (4.9)

where b = (f(t1); :::; f(tn))T : From (2.6), (3.13), (4.7), (4.9) and Lemma 4.3,
we have the following theorem.
Theorem 4.5. Let � (C� 6= 1) be an arbitrarily closed smooth curve.

Assume that Ah and Bh are the real symmetric matrices de�ned by (3.5) and
(4.5), respectively. Then the e¤ective condition number for (4.6) has the bound

Cond-e¤=
jjbjj

j�njjjxjj
� ch�1 = O(h�1); (4.10)

where c is a constant number independent of h:

5 Stability analysis for curved polygons � or open
contours �

Let � = [dm=1�m (d > 1) be curved polygons or open contours with C� 6= 1;
and �m be a piecewise smooth curve. De�ne the boundary integral operators
on �m;

(Kqmvm)(y) = �
1

2�

Z
�m

vm(x) log jy � xjdsx; y 2 �q; m; q = 1; :::; d; (5.1)

where vm(x) =
@um(x)
@�� � @um(x)

@�+ : Then Eq (4.1) can be converted into a matrix
operator equation

Kv = F; (5.2)

where K = [Kqm]
d
q;m=1; v = (v1(x); :::; vd(x))

T and F = (f1(y); :::; fd(y))
T :

Here, let K be symmetric operators.

12



5.1 Mechanical Quadrature Methods

Assume that �m can be described by the parameter mapping xm(s) = (xm1(s);
xm2(s)) : [0; Tm] ! �m with ��m � jx

0

m(s)j = [jx
0

m1(s)j2+ jx
0

m2(s)j2]1=2 � �̂m >
0; where �� and �̂ are two constants, and Tm is the arc length of �m: Using the
sinp�transformation[22]

s = Tm'p(t) : [0; 1]! [0; Tm]; p 2 N; (5.3)

with 'p(t) = #p(t)=#p(1) and #p(t) =
R t
0
(sin�t)pdt; then the integral operators

(5.1) can be converted into integral operators on [0,1] as follows. De�ne

(Aqqwq)(t) =

Z 1

0

aqq(t; �)wq(�)d� ; t 2 [0; 1]; (5.4)

(Bqmwm)(t) =

Z 1

0

bqm(t; �)wm(�)d� ; t 2 [0; 1]; (5.5)

where aqq(t; �) = � 1
2� ln j2e

�1=2 sin�(t��)j; wm(t) = vm(xm(Tm'p(t)))jx0m(Tm
'p(t))jTm'0p(t) and

bqm(t; �) =

(
� 1
2� ln j

xq(t)�xq(�)
2e�1=2 sin�(t��) j; for q = m;

� 1
2� ln jxq(t)� xm(�)j; for q 6= m:

In (5.4) and (5.5), xm(t) = (xm1(Tm'p(t)); xm2(Tm'p(t))) (m = 1; ..., d); and
jxq(t)�xm(�)j = [(xq1(t) � xm1(�))2 + (xq2(t) � xm2(�))2]1=2: Hence Eq (5.2)
becomes

(A+B)W = G; (5.6)

where A =diag(A11; :::; Aqq) and B = [Bqm]
d
q;m=1 are symmetric operators,

andW = (w1; :::; wd)
T and G = (g1; ..., gd)T with gm(t) = fm(xm(t)):

Let hm = 1=nm (nm 2 N; m = 1; :::; d) be mesh widths for the nodes,
tj = � j = (j � 1=2)hm (j = 1; :::; nm). By the trapezoidal or the midpoint
rule[10] we construct the Nyström�s approximate operator Bhqm of Bqm. For the
weakly singular operators Amm; by the quadrature formula[21] (3.3), we can
also construct the Nyström approximate operator Ah

qq: Setting t = ti (i = 1; :::;
nq); we obtain the following approximate equations of (5.6)

KhWh = (Ah+Bh)Wh= Gh; (5.7)

whereWh = (w
h
1 (t1); :::; w

h
1 (tn1); :::; w

h
d (t1); :::; w

h
d (tnd))

T ;Ah =diag(Ah
11; :::;A

h
dd);

Ah
qq = [aqq(tj ; � i)]

nq
j;i=1; Bh = [Bhqm]

d
q;m=1; B

h
qm = [bqm(tj ; � i)]

nq;nm
j;i=1 ; Gh =

(g1(t1); :::; g1(tn1); :::; gd(t1); :::; gd(tnd))
T ; and

aqq(tj ; � i) =

�
�[hq ln j2e�1=2 sin�(ti � � j)j]=(2�); as i 6= j;
�[hqj ln j2�e�1=2hq=(2�)j]=(2�); as i = j:

(5.8)

Obviously, Eq (5.7) is a linear equation system with n�unknowns, where n =
n1 + � � �+ nd: We cite the results of [15].
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Lemma 5.1[15]. Assume that �m (m = 1; :::; d) are smooth curves, � =
[dm=1�m with C� 6= 1; and h0 = max1�m�d hm is su¢ ciently small. Also let
u0 2 C4(�)�C4(�): Then there exists a unique solutionWh for (5.7) such that

W � Ŵh
= h3�+O(h40); (5.9)

at node points, where a vector function � = (�1;:::; �d)
T 2 (C0[0; 1])d is inde-

pendent of h3 = (h31; :::; h
3
d) and h = (h1; :::; hd)

T ; and the subspace

C0[0; 1] = fv(t) 2 C[0; 1] : v(t)= sin2(�t) 2 C[0; 1]g

of C[0; 1] with the norm jjvjj� = max0�t�1 jv(t)= sin2(�t)j:

5.2 Condition number and e¤ective condition number

Under the above assumptions that A and B are symmetric operators, we con-
clude from (5.7) and (5.8) that the matrices Ah+Bh also are the real symmetric
matrices of n�order. Following the above sections, we can derive similarly the
bounds of condition number and e¤ective condition number, to obtain the fol-
lowing theorem.
Theorem 5.2. Assume that �m (m = 1; :::; d) is smooth curve and � =

[dm=1�m with C� 6= 1: Let Ah be de�ned by rules (5.8) and Bh be de�ned by
the trapezoidal or the midpoint rule[10]. Then the condition number for (5.7)
has the bound

Cond.=O(h�1); h = min
1�m�d

hm; (5.10)

and e¤ective condition number for (5.7) has the bound

Cond�e¤=
jjbjj
�njjxjj

= O(h�1); h = min
1�m�d

hm: (5.11)

Remark. In Sections 3-5, we derive the condition number

Cond.=O(h�1) (5.12)

and the e¤ective condition number

Cond�e¤=O(h�1); (5.13)

to indicate
Cond�e¤=O(Cond.): (5.14)

Both (5.12) and (5.13) imply that the numerical stability of the MQMs is ex-
cellent for the �rst kind BIEs, which also agree with [8]. The new stability
analysis in this paper enhances the MQMs, whose error analysis has already
been explored in [14-17]. When the partition nodes are quasiuniform for smooth
solutions, the improvements of Cond�e¤ in (5.13) from Cond. in (5.12) are in-
signi�cant, since the Cond. itself is not large in practical applications, where h
is not very small in computation. However, when C� ! 1 (see [8]) or the local
re�nements of nodes are used for singularity problems, the values of Cond. may
be large. Then the Cond�e¤ as from (5.14) may be much smaller than those of
Cond.
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6 Analysis and comparisons for e¤ective condi-
tion number and condition number

In Li et al. [18], the e¤ective condition number is applied to the �nite di¤erence
method for solving Poisson�s equation with the mixed type of Dirichlet and
Neumann boundary conditions

��u = f; in 
;
u = g on �D; @u@� = g

� on �N ;
(6.1)

where � = @2

@x2 +
@2

@y2 ; 
 is a polygon with the boundary @
 = �D[�N ; and � is
the outward normal to @
:When the functions f; g and g� are smooth enough,
the solution u of (6.1) is also smooth enough. The traditional condition number
of the di¤erence matrix is well known

Cond. = O(h�2min); (6.2)

where hmin is the miminal meshspacing of the di¤erence grids used. In [18], the
bounds of Cond�e¤ were derived, to give

Cond�e¤� cfjjf jj0;
 + h�0:5jjg�jj0;�N + h�0:5h�1minjjgjj0;�Dg; (6.3)

where jjf jj0;
; jjg�jj0;�N and jjjgjj0;�D are the Sobolev norms, h is the maximal
meshspacing of the di¤erence grids, c is a constant independent of h: Evidently,
Cond�e¤ in (6.3) is smaller than Cond. in (6.2). In particular, when the
boundary conditions are homogeneous, i.e., g = g� = 0; we obtained

Cond�e¤=O(1); (6.4)

which is signi�cantly smaller than Cond. in (6.2). Numerical experiments were
provided in [18], to support (6.3) and (6.4).
In this paper, for numerical BIE of the �rst kind by MQMs, when C� 6= 1;

Cond�e¤ and Cond have the same growth rates as h ! 0 (see (5.14)): Also
from the data in Tables 1-3 given in Section 7, we can see

Cond.
Cond�e¤

= c 2 (1:5; 2]; (6.5)

Hence, the improvements of Cond�e¤ to Cond. are insigni�cant for the stability.
For numerical partial di¤erential equations (PDE) and BIEs, why are the bounds
of Cond�e¤ over those of Cond. are so di¤erent? Below we intend to provide
arguments to explain such distinct behaviors of Cond�e¤, based on matrix
analysis.

6.1 E¤ective condition number for BIE

Denote the real eigenvalues �i of the discrete sti¤ness matrix Kh (or Ah) of
Sections 3-5 in a descent order,

j�1j > j�2j � ::: � j�nj > 0; (6.6)
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with1

j�1j� O(1); j�nj� O(hp); p � 0:

Hence, the traditional condition number has the bound

Cond.=
j�1j
j�nj

� O(hp): (6.7)

In the paper, there exist the bounds

jjxjj� jjbjj� O(h�0:5): (6.8)

We have the following theorem.
Theorem 6.1. Let (6.6) and (6.8) hold. Then there exists the equivalence

Cond�e¤� O(Cond.). (6.9)

Proof. We have from (6.6) and (6.8)

Cond�e¤=
jjbjj

j�njjjxjj
� O(

1

j�nj
)� O(

j�1j
j�nj

)� O(Cond.).

This completes the proof of Theorem 6.1.
Denote the eigenpairs (�i;ui) of Kh; and the angles �i between b and ui by

cos �i = cos(b;ui) =
(b;ui)

jjbjj =
�i
jjbjj ; (6.10)

where �i = (b;ui) = u
T
i b:

Lemma 6.2. Let (�i;ui) be eigenpairs of matrix Kh: Suppose that matrix
Kh is symmetric and nonsingular, and that

jjxjj� jjbjj: (6.11)

Then there exist the bounds

�ni=1 cos
2 �i = 1; (6.12)

and

�ni=1
cos2 �i

�2i
� O(1); (6.13)

where the angles �i are given in (6.10).
Proof. We have b = �ni=1�iui: Then we obtain from (6.10)

jjbjj =
q
�ni=1�

2
i = (

q
�ni=1 cos

2 �i)jjbjj;

1The notation a� b (a� O(b)); b > 0; denotes that there exist two constants c1 and such
that c1b � jaj � c2b; b > 0:
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to give the �rst desired result (6.12). Next, from x = K�1
h b we have x =�ni=1

�i
�i
ui:

Then there exists an equality,

jjxjj =

s
�ni=1

�2i
�2i
=

s
�ni=1

cos2 �i

�2i
jjbjj:

We obtain from (6.11)

�ni=1
cos2 �i

�2i
= [
jjxjj
jjbjj ]

2 � O(1):

This is the second result (6.13), and completes the proof of Lemma 6.2.
From (6.6), we may denote the eigenvalues by

j�ij = cihpi � O(hpi); (6.14)

where ci are positive constants, and the powers pi are given by

0 = p1 � p2 < ::: � pn = p; (6.15)

Lemma 6.3. Let the conditions in Lemma 6.2 and (6.14) hold. Then there
exist the bounds

j cos �ij = O(hpi) = O(j�ij); (6.16)

where �i are de�ned in (6.10).
Proof. We have from Lemma 6.2

j cos �ij = j�ij
s
cos2 �i

�2i
� j�ij

s
�ni=1

cos2 �i

�2i
� cj�ij � chpi ; (6.17)

to give the desired result (6.16), and complete the proof of Lemma 6.3.
In fact, u1 in the eigenpair (�1;u1) is the low frequency eigenvector, and un

in the eigenpair (�n;un) is the high frequency eigenvector. The ui is said the
low frequency eigenvector if its corresponding eigenvalue �i satisfying j�ij �
O(j�1j) � O(1); or the high frequency eigenvector if j�ij � O(j�nj): Also b is
rich in ui if

j cos �ij = j cos(b;ui)j � c0 > 0; (6.18)

where c0 is a constant independent of h: Hence, Lemma 6.3 implies that b must
not be rich in high frequency eigenvectors, because j cos �ij ! 0 when h is small.
Lemma 6.4. Let the conditions in Lemma 6.2 hold. Then the solution

vector x is rich in a low frequency eigenvector uk if and only if b is rich in uk:
Proof. First suppose that b is rich in the low frequency eigenvector uk with

j�kj� O(j�1j)� O(1); (6.19)

where k is a small integer. Eq (6.18) gives

j cos(b;uk)j � c0 > 0: (6.20)
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Since x = K�1
h b and

jjbjj
jjxjj � c1 > 0; (6.21)

where c1 is a constant independent of h; we have

j cos(x;uk)j =
j(x;uk)j
jjxjj =

j(K�1
h b;uk)j
jjxjj =

j(b;K�1
h u

k
)j

jjxjj

=
j(b;uk)j
j�kjjjxjj

=
j cos(b;uk)j

j�kj
jjbjj
jjxjj �

c0c1
j�kj

= �c0 > 0; (6.22)

where we have used j�kj� O(1): This implies that x is rich in uk:
On the other hand, suppose that j cos(x;uk)j � �c0 > 0; we have

j cos(b;uk)j =
j(b;uk)j
jjbjj =

j(Khx;uk)j
jjbjj =

j(x;Khuk)j
jjbjj

=
j�kjjj(x;uk)j

jjbjj = j�kjjj cos(x;uk)j
jjxjj
jjbjj � j�kj

�c0
c1
� c0 > 0:

This implies that b is also rich in uk; and completes the proof of Lemma 6.4.
Theorem 6.5. Let all conditions in Lemma 6.2 hold. Suppose that x is

rich in a low frequency eigenvector uk: Then there exists a constant c0 with
0 < c0 � 1 independent of h such that

Cond�e¤� c0Cond. (6.23)

Proof. By the assumption, we have

j cos(x;uk)j � �c0 > 0; (6.24)

where �c0 is a constant independent of h: Denote the solution vector x = x1+x2;
where x1 = (x;uk)uk: Then we have

jjx1jj = j(x;uk)j = j cos(x;uk)jjjxjj ��c0jjxjj;

to give

jjxjj � 1
�c0
jjx1jj: (6.25)

Since b = Khx; we have b = b1+b2; where b1 = Khx1 = j�kjx1: Hence, we
obtain

jjx1jj =
1

j�kj
jjb1jj: (6.26)

Combining (6.25) and (6.26) yields

jjxjj � 1
�c0

1

j�kj
jjb1jj: (6.27)
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Now we obtain

Cond�e¤=
jjbjj

j�kjjjxjj
� �c0

j�kj
j�nj

jjbjj
jjb1jj

: (6.28)

Since jjbjj �jjb1jj and j�kj
j�1j � 
k > 0; Eq (6.28) leads to

Cond�e¤� �c0
j�kj
j�nj

� �c0
k
j�1j
j�nj

= �c0
kCond.=c0Cond.

where c0 = �c0
k: This is the desired result (6.23), and completes the proof of
Theorem 6.5.
Remark 6.1. Theorems 6.1 and 6.5 can be applied to many numerical

methods for BIEs of the �rst kind in [8] and the second kind in Atkinson and
Han [2,3]. Moreover, the conclusions in this subsection are also valid for the
boundary element method (BEM).

6.2 E¤ective condition number for numerical PDEs

Now, we turn to study Cond�e¤ for numerical PDEs. For (6.1), consider the
smooth problem with the smooth solution u: Let the di¤erence grids (xi; yj) are
quasiuniform. The quasiuniform grids are said if

h=min
i;j
fhi; kjg � c; (6.29)

where h = maxfhi; kjg; hi = xi � xi�1; kj = yj � yj�1; and c is a constant
independent of h: The discrete di¤erence equations of (6.1) are denoted by the
matrix form

�Khx = b; (6.30)

where the matrix �Kh is symmetric and positive de�nite. Also denote (�i;ui)
the eigenpairs of matrix Kh; and the eigenvalues are also given in a descent
order

c1h
�p = �1 > �2 � ::: � �n = c0 > 0; (6.31)

where p � 2; c1 and c0 are two constants independent of h: For the homogeneous
boundary conditions (i.e., g = g� = 0); the following relations are satis�ed:

jjxjj� jjbjj� O(h�1): (6.32)

We can derive the following Theorems by following the proof of Theorems 6.1
and 6.5.
Theorem 6.6. Let (6.31) and (6.32) be given. Then Eq (6.4) holds.
Theorem 6.7. Let (6.31) and (6.32) be given. Suppose that x is rich in a

low frequency eigenvector uk:Then Eq (6.4) holds.
From Theorems 6.1, 6.5-6.7, the e¤ective condition number may be signif-

icantly smaller than Cond. only for numerical PDEs, but not for numerical
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BIEs. The intrinsic behaviors of Cond�e¤ result from the follows. The di¤er-
ential operator �� is unbounded so that the eigenvalues of its discrete matrix
have the bounds

�n � O(1); �1 � O(h�p); p � 2: (6.33)

On the other hand, the integral compact operator is bounded so that the eigen-
values of its discrete matrix have the following di¤erent bounds

j�1j� O(1); j�nj� O(h�p); p � 0:

Hence, we conclude that the e¤ective condition number is important only for
numerical PDEs.
For numerical BIEs, the traditional Cond.=O(h�1) is not large, and the

Cond�e¤ has a little helpful for better stability. This fact also displays that the
Cond�e¤ is really e¤ective when the traditional Cond. is large. This is just the
worth place where the e¤ective condition number works for.

7 Numerical Experiments

We carry out three experiments by MQMs and h3�Richardson�s extrapolation
or splitting extrapolation methods (SEM), and verify the error and the stability
analysis made in the above sections.
Example 1. Let � be a circle with radius e�1=2: Based on [2,23,27], C� =

e�1=2 6= 1: Consider the typical BIE of the �rst kind

�
Z �

��
ln j2e�1=2 sin t� �

2
jw(�)d� = �

2
cos 2t; (7.1)

where w(t) = cos 2t is the true solution: In Table 1.1, we list the errors en =
max1�i�n jw(ti)�wh(ti)j; eEn = max1�i�n jw(ti)�wE(ti)j; and values of Cond
and Cond-e¤, where wE(ti) = (8wh=2(ti)�wh(ti))=7 and eEn denote the extrap-
olation values and the extrapolation errors, respectively.

Table 1.1 The errors en and eEn , Cond. and Cond-e¤ for (7.1).

n en eEn j�1j j�nj cond cond-e¤
23 3.820E-2 3.156 1.088 2.899 1.500
24 4.737E-3 4.361E-5 3.143 5.444E-1 5.774 2.899
25 5.885E-4 4.086E-6 3.141 2.722E-1 1.154E+1 5.7742
26 7.342E-5 1.695E-7 3.141 1.361E-1 2.308E+1 1.154E+1
27 9.172E-6 5.955E-9 3.141 6.805E-2 4.616E+1 2.308E+1
28 1.146E-6 1.964E-10 3.141 3.402E-2 9.233E+1 4.616E+1
29 1.432E-7 6.293E-12 3.141 1.701E-2 1.846E+2 9.233E+1
210 1.791E-8 2.978E-14 3.141 8.506E-3 3.693E+2 1.846E+2

Table 1.2. the values of �k; �k and �k at n = 32:
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k �k �k �k k �k �k �k
1 3.141 -1.001E-15 -1.570 17 0.408 -8.081E-16 -1.570
2 3.141 -2.053E-15 -1.570 18 0.369 6.993E-16 1.570
3 3.141 3.162E-15 1.570 19 0.369 -2.224E-16 -1.570
4 1.571 -6.249 -0.102 20 0.339 -1.055E-15 -1.570
5 1.571 -6.456E-1 1.467 21 0.339 3.333E-16 1.570
6 1.049 -2.155E-15 -1.570 22 0.316 -7.770E-16 -1.570
7 1.049 -1.836E-15 -1.570 23 0.316 -4.167E-17 -1.570
8 0.789 -1.199E-15 -1.570 24 0.299 2.677E-16 1.570
9 0.789 3.882E-15 1.570 25 0.299 -4.991E-15 -1.570
10 0.634 -3.711E-16 -1.570 26 0.287 -4.814E-16 -1.570
11 0.634 1.119E-16 1.570 27 0.287 1.118E-16 1.570
12 0.532 1.944E-15 1.570 28 0.278 8.322E-16 1.570
13 0.532 3.536E-16 1.570 29 0.278 2.778E-16 1.570
14 0.460 1.117E-15 1.570 30 0.273 -3.600E-16 -1.570
15 0.460 1.278E-15 1.570 31 0.273 -5.557E-17 -1.570
16 0.408 -1.668E-16 -1.570 32 0.272 -9.434E-16 -1.570

Example 2[17;21]. Let � be x(t) = c0(e
p
�1t + c1e

�
p
�1t); t 2 [0; 2�]; which

is an elliptic curve, where c0 = 50 and c1 = 0:5: Since C� 6= 1; the boundary
integral equation Z 2�

0

ln jx(t)� x(�)jw(�)d� = 2� ln jx(t)j (7.2)

has the unique solution

w(t) = 1 + 4
1X
k=1

(�1)k ck1
1 + c2k1

cos(2kt):

The computed results are listed in Table 2.1

Table 2.1 The errors en and eEn ; Cond. and Cond-e¤ for (7.2).

n en eEn j�1j j�nj Cond Cond-e¤
24 2.477E-3 2.458E+1 5.474E-1 4.489E+1 2.929E+1
25 2.441E-4 7.481E-5 2.458E+1 2.722E-1 9.030E+1 5.879E+1
26 3.045E-5 7.296E-8 2.458E+1 1.361E-1 1.806E+2 1.173E+2
27 3.810E-6 4.061E-9 2.458E+1 6.805E-2 3.612E+2 2.346E+2
28 4.765E-7 1.529E-10 2.458E+1 3.402E-2 7.224E+2 4.693E+2
29 5.956E-8 5.048E-12 2.458E+1 1.701E-2 1.444E+3 9.387E+2
210 7.445E-9 1.593E-13 2.458E+1 8.506E-3 2.889E+3 1.877E+3

Table 2.2. the values of �k; �k and �k at n = 32
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k �k �k �k k �k �k �k
1 24.58 1.534E+2 0.000 17 0.406 -2.365E-14 -1.570
2 4.712 -2.931E-14 -1.570 18 0.369 -8.881E-15 -1.570
3 1.964 -1.964E-14 -1.570 19 0.368 1.159E-14 1.570
4 1.571 -2.086E-14 -1.570 20 0.339 8.881E-15 1.570
5 1.180 4.440E-15 1.570 21 0.339 2.471E-14 1.570
6 1.179 -9.014E-15 -1.570 22 0.316 -8.881E-15 -1.570
7 0.918 -1.536E-14 -1.570 23 0.316 1.366E-14 1.570
8 0.838 8.881E-14 -1.570 24 0.299 -1.332E-14 -1.570
9 0.740 1.831E-14 1.570 25 0.299 1.233E-15 1.570
10 0.653 6.217E-15 1.570 26 0.287 3.908E-14 1.570
11 0.614 1.222E-14 1.570 27 0.287 -1.411E-14 -1.570
12 0.540 0.000 1.570 28 0.278 0.000 1.570
13 0.523 -2.735E-14 -1.570 29 0.278 6.920E-15 1.570
14 0.464 -3.730E-14 -1.570 30 0.273 -8.881E-15 -1.570
15 0.457 -3.193E-14 -1.570 31 0.273 2.418E-14 1.570
16 0.409 -1.687E-14 -1.570 32 0.272 -5.329E-15 -1.570

Example 3[24]. Let � be an open contour of length 2, in the form of a
right-angled wedge:

� = f(x1; 0) : 0 � x1 � 1g [ f(0; x2) : 0 � x2 � 1g:

The integral equation is chosen as

�
Z
�

ln jy � xjv(x)dsx = 1; for (y1; y2) 2 �: (7.3)

We compute the numerical solution of

u(y) = �
Z
�

ln jy � xjv(x)dsx

at (0:5; 0:5), whose true value u(0:5; 0:5) takes 0:621455343.
From [24], although the exact solution v(x) is expected to have a O(jx �

x0j�
1
3 ) singularity at the right-angled corner, the dominant singularities in v(x)

occur at the two ends, with O(jx� x0j�
1
2 ). Based on [15,16], using '6(t) in the

periodical transformation (5.3), we obtain the numerical results at Q = (0:5; 0:5)
by MQMs and list Cond. and Cond-e¤ in Tables 3.1. Let nm (m = 1; 2) be
the number of uniform partition on [0; 1] corresponding to the mth edge �m
of �: Based on (5.9), we can obtain the splitting extrapilation errors eE(Q) =
juE(Q)� u(Q)j; where

uE(Q) =
8

7
[
dX

m=1

uh(m)(Q)� (d�
7

8
)uh(0)(Q)], d = 2;

is the splitting extrapilation values. The errors juh(Q)�u(Q)j and the splitting
extrapilation errors eE(Q) are also listed in Table 3.1, where (n1; n2) = (8; 8)
and (16; 16):
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Table 3.1. The errors, Cond. and Cond�e¤ for (7.3).

(n1; n2) juh � uj j�1j j�nj Cond. Cond-e¤
(4,4) 4.413E-2 0.104 4.287 40.865 12.042
(8,4) 2.166E-2 0.113 4.147 36.420 11.979
(4,8) 2.166E-2 0.113 4.147 36.420 12.049
eE 7.229E-3
(8,8) 1.738E-3 0.055 4.374 78.474 22.395
(16,8) 9.452E-4 0.056 4.312 76.007 23.820
(8,16) 9.452E-4 0.056 4.312 76.007 23.856
eE 7.495E-5
(16,16) 1.383E-4 0.028 4.378 154.828 44.046
(32,16) 7.805E-5 0.028 4.357 153.680 47.609
(16,32) 7.805E-5 0.028 4.357 153.680 47.618
eE 5.184E-7
(32,32) 1.725E-5 0.014 4.375 308.348 87.754
(64,32) 9.703E-6 0.014 4.369 308.234 95.208
(32,64) 9.703E-6 0.014 4.369 308.234 95.210
eE 1.350E-9

Table 3.2. the values of �k; �k and cos�k at (8; 8) in Table 3.1.

k �k �k jcos�kj k �k �k jcos�kj
1 4.374 3.006 0.752 9 0.280 -3.608E-16 6.123E-17
2 2.309 1.110E-16 6.123E-17 10 0.225 -0.021 5.334E-3
3 2.076 2.542 0.636 11 0.218 8.326E-17 6.123E-17
4 0.941 0.653 0.163 12 0.187 0.014 3.496E-3
5 0.551 1.110E-16 6.123E-17 13 0.184 4.718E-16 6.123E-17
6 0.532 0.258 0.065 14 0.162 5.153E-3 1.288E-3
7 0.396 2.775E-16 6.123E-17 15 0.090 -2.775E-16 6.123E-17
8 0.308 0.078 0.019 16 0.055 3.665E-17 6.123E-17

Now, let us examine the numerical results in Tables 1-2. We can see numer-
ically,

ejn=2m+1

ejn=2m
� 23; e

E jn=2m+1

eE jn=2m
! 25 (7.4)

to indicate the empirical convergence rate O(h3), and the �rst extrapilation
convergence rate O(h5): From Tables 1-3, we can also see

j�1j � C; and j�nj = O(h�1): (7.5)

Eq (7.5) coincide with the theoretical estimates of j�1j and j�nj given in Sections
3-5 perfectly. Next, from Tables 1-3 we have

Condjn=2m+1

Condjn=2m
� 2 and Cond-e¤jn=2m+1

Cond-e¤jn=2m
� 2 (m = 3; :::; 9); (7.6)
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and

Condj(2m+1;2m+1)

Condj(2m;2m)
� 2 and

Cond-e¤j(2m+1;2m+1)

Cond-e¤j(2m;2m)
� 2 (m = 2; 3; 4); (7.7)

to indicate that Cond=O(h�1) and Cond-e¤=O(h�1); which are consistent with
Theorems 3.3-3.4, 4.4-4.5, and 5.2. Moreover, from Table 3.1 we have

juh � uj(4;4)
juh � uj(8;8)

= 25:39;
juh � uj(8;8)
juh � uj(16;16)

= 12:56 and
juh � uj(16;16)
juh � uj(32;32)

= 8:01; (7.8)

Hence, the SEMs can provide more accurate solutions. Note that from Table 3.1

with the total number n =
2X

m=1

nm = 32 and 64; the error of SEMs is 5.184E-7

and 1.350E � 9; respectively: In contrast, when n = 256 the uh = 0:62125 is
given in [24] by Galerkin methods, where the approximating space Sh is the
piecewise constant space. This fact displays the e¢ ciency of MQMs and SEMs.
Finally, to scrutinize the spectral distribution of vector b in uk, we compute

all �k = uTk b and �k = arc cos(�k=jjbjj); and list them in Tables 1.2 and 2.2
in the descending order of j�kj: We can see that �k � ��

2 except �4 = �0:102
and �1 = 0:000 from Tables 1.2 and 2.2, respectively. This fact conincides with
Theorem 6.5. Besides in Table 3,2, we list all �k and cos�k = �k=jjbjj, to �nd
the dominant distribution with cos�1 = 0:752; cos�3 = 0:636 and cos�4 = 0:163
because cos2�1+cos2�3+cos2�4 =0:996569 � 1: Hence, the dominate rich vectors
of b happen just at the low frequency eigenvectors u1; u3 and u4, also to agree
with Theorem 6.5.

8 concluding remarks

1. New stability analysis is made for the mechanical quadrature methods
(MQMs) for the �rst kind BIEs in [14-17], based on Cond. and Cond-e¤ de-
�ned in (2.6). The key analysis is the estimates of eigenvalues for the discrete
matrices resulting from MQMs. The main results are

Cond-e¤� Cond.� O(h�1): (8.1)

Although the e¤ective condition number is smaller than Cond., the improve-
ments of Cond-e¤ are insigni�cant for stability analysis. However, Eqs. (8.1)
display an excellent stability for the MQMs. Since the MQMs provide not only
the O(h3) convergence rates but also the excellent stability, the MQMs are
more advantageous over the other methods, such as the Galerkin method, the
collocation method, and the modi�ed quarature method in [2,6,20,23,27].
2. In Section 6, based on matrix analysis, we prove again that the Cond.

and the Cond-e¤ have the same growth rate for numerical BIEs. Note that
the improvements of stability by the Cond-e¤ are not as signi�cant as those for
numerical PDE in [18]. Such intrinsic di¤erences result from the fact that the
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operators of BIEs and PDEs are bounded and unbounded respectively. Hence,
the eigenvalues of their discrete matrices have di¤erent bounds in (6.6) and
(6.33). Moreover, the analysis of Cond-e¤ in Section 6.1 is valid for all numerical
methods for BIEs of the �rst kind [8], the second kind [2], and the boundary
element methods.
3. Numerical experiments are carried out for the arbitrary boundary � with

C� 6= 1 by MQMs and SEM, and the computed results agree with the stability
analysis perfectly. The extrapolation and the SEM techniques are applied to
the �rst kind BIEs, to greatly improve the solution accuracy.
4. Finally, let us compare the stability analysis in this paper with that in

Christianan and Saranen [8] in more detail. In [8], p.48, the algorithms (2.6)
were also proposed, where the local condition number was called. For typical
BIE of the �rst kind in Section 3, they have discussed three methods: (1) The
Galerlin method, (2) the collocation method, and (3) the modi�ed quadrature
method, to derive the same growth rates as in (5.12) and (5.13) for smooth prob-
lems under C� 6= 1: In this paper, we discuss three types of the �rst kind BIEs in
Sections 3-5; (1) the typical BIE of the �rst kind, (2) the case of � being closed
smooth, and (3) the case of � being curved polygons and open contours. In Type
(3), since there exist corner singularities, the algorithms and their analysis are
more challenging. Compared with the modi�ed quadratic method in [8], the
MQMs are more advantageous: (1) the high O(h3) convergence rates, (2) wide
applications for three types of the �rst kind BIEs, and (3) the superconvergence
O(h6) by the Richarson�s extrapolation or the splitting extrapolation. Although
the above analysis has been made in [14-17], but no stability analysis exists for
the MQMs so far. This paper is the �rst time to explore their stability analyse
(8.1), which grants the MQMs an excellent stability.
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