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Abstract

This paper presents mechanical quadrature methods (MQM) for solv-
ing �rst-kind boundary integral equations (BIE) on open contours, which
possesses high accuracy O(h30) and low computing complexities, where
h0 = max1�m�d hm and hm (m = 1; :::; d) is the mesh witdth of a curved
edge �m of open contours �. The paper shows that errors posses multi-
variate asymptotic expansions with h3m (m = 1; :::; d) for open contours.
By using the splitting extrapolations the higher precision approximations
and a posteriori estimates are obtained. Moreover, by the stability analy-
sis, we conclude that mechanical quadrature methods provide not only
high accuracy algorithms O(h30); but also excellent stability. Numerical
examples are provided to support our theoretical analysiss.

key word : �rst-kind boundary integral equation, mechanical quadra-
ture method, splitting extrapolation, a posteriori estimate, open contour,
stability analysis.
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By the layer potential theory, Dirichlet�s problems of plane Laplace equations�
�u = 0; in 
;
u = f; on �;

(1.1)

are converted into the �rst kind boundary equation (BIE)

� 1

2�

Z
�

v(x) ln jx� yjdsx = f(y); y 2 �; (1.2)

where � = [dm=1�m is the open contour with edges �m; and 
 = R2n�; and
jx� yj is the Euclidean distance. In (1.2) the unknown function v(x) = @u(x)

@n� �
@u(x)
@n+ ; where n is a unit outward normal derivative at a point x 2 �. From the
known results[1;2;23;27;28;35]; as the logarithmic capacity (trans�nite diameter)
C� 6= 1; there exists a unique solution in (1.2). As soon as v(x) is solved from
(1.2), u(y) (y 2 
) can be calculated by

u(y) = � 1

2�

Z
�

v(x) ln jx� yjdsx; y 2 
: (1.3)

Based on [3, 27,28 35], the solution v(x) of (1.2) is usually singular at the
endpoints and corner points. These singularities degrade the rates of conver-
gence when numerical methods such as Galerkin and collocation methods are
applied[1;3;6;7;12;27;28;31;35], and so one introduces modi�cations in order to re-
store the optimal rate of convergence. One possible modi�cation is the aug-
mented method for which the approximating spaces are augmented by appro-
priate singular functions which mimic the behaviour of the exact solution at the
endpoints and corner points of the open contour �: This modi�cation applied
to the Galerkin method with piecewise polynomial test and trial functions has
been analyzed by Stephan and Wendland in [31]. Another modi�cation is to
grade the mesh in a suitable way near the endpoints and corner points. Its appli-
cation to the Galerkin method with piecewise constant test and trial functions
has been analyzed by Yan and Sloan [36], and its application to the collocation
method with piecewise linear trial functions has been done by Costabel, Ervin,
& Stephan [8]. In [35] Yan also provided the method of cosine change of vari-
able for the numerical solution of (1.2) with Galerkin and collocation methods,
and obtained the superconvergence. However, quadrature methods are gener-
ally considered to be more practical since in their numerical implementation
the computation of the matrix elements is less costly than in the correspond-
ing collocation and Galerkin methods. Although some of the more practical
quadrature methods have been considered by Kress and Sloan [19], by Saranen
and Sloan [30] and by Saranen [29], one never provide mechanical quadrature
methods (MQMs) for (1.2) with the open contour �.
In the paper, MQMs are constructed for solving BIE of the �rst kind with the

open contour �, and the convergence theories are given. Firstly, we make use of
the Sidi�s quadrature rules[25] to calculate weakly singular integrals. Secondly,
by calculating directly we get the eigenvalue expression of discrete matrices in
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the special case and estimate their super-bound and lower-bound. Finally, by
using perturbation theory and Anselon�s collective compact theory[4], we not
only obtain that it is reasonable to construct MQMs, but also show that the
condition number of discrete matrices is only O(h�1): For MQMs the most of
work can not only be saved, without calculating any singular integrals, but
also the accuracies are very high O(h3): Especially, the singularity solutions at
concave points and endpoints heavily dampen the approximate accuracy. The
accuracy of Galerkin methods[27;28] is onlyO(h1+") (0 < " < 1) and the accuracy
of collocation methods[33] is even lower. In contrast, the accuracy of MQMs in
the paper is as high as O(h3): In addition, collocation methods[33] are greatly
restricted in practice, since the interior angle � can only be in � 2 (29:850;
330:150):
It is a very important study �eld in numerical mathematical how to enhance

further the approximate accuracy. Extrapolation algorithms and splitting ex-
trapolation algorithms (SEM) are very e¤ective methods to improve approxi-
mate accuracy. SEM[13;20;21] based on multivariate asymptotic expansions of
errors are a very e¤ective parallel algorithm, which possesses a high order of
accuracy and almost optimal computational complexity. Since Lin and Lü pub-
lished the �rst paper[20] in 1983, SEMs have been applied to many problems,
e.g., the multidimensional numerical integrations[21], �nite di¤erential methods
and �nite element methods[21]. Using Galerkin methods, Rüde and Zhou[24] es-
tablished multi-parameter extrapolation methods for BIE system of the second
kind on polygonal domains. Assuming that 
 was a bounded, simply connected
region with a smooth boundary � and the inverse matrix of discrete equation
existed and was uniformly bounded, Xu and Zhao[32] established an extrapo-
lation method for solving BIE from the boundary value problem of the third
kind. Graham, Qun, and Rui- feng[13] established extrapolation of Nyström
solutions of boundary integral equations of the second kind on non-smooth do-
mains. Huang and Lü[15;16] constructed the MQM and their extrapolations for
solving BIE of Steklov eigenvalue problems and MQM and SEM for solving
BIE of linear elasticity Dirichlet problems on polygons. By MQMs, this paper
shows that multivariate asymptotic expansions with h3i (i = 1; :::; d) for open
contours. Thus, once discrete equations with some coarse meshed partitions
are solved in parallel, the approximate accuracy can be greatly improved by
the SEMs; moreover, a posteriori asymptotic error estimate as self-adaptive
algorithms is derived.

This paper is organized as follows: In Section 2, the singularity of the
integral kernels and solutions are eliminated for the �rst kind BIE. In Section 3,
for the open contours, MQMs are constructed, and approximation convergences
are proved. In Section 4, the multivariate asymptotic expansions with h3i (i =
1; :::; d) of errors are shown, and SEMs are established. In Section 5, the stability
analysis is made. In Section 6, some numerical examples are reported and
numerical results show further that the methods are worthy of recommending.
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2 The singularity analysis of the integral kernels
and solutions

Let � = [dm=1�m (d > 1) be open contours with C� 6= 1; and �m (m = 1; ...,
d) be a piecewise smooth curve. De�ne boundary integral operators on �m;

(Kqmvm)(y) = �
1

2�

Z
�m

vm(x) log jy � xjdsx; y 2 �q (m; q = 1; :::; d); (2.1)

Thus Eq (1.2) can be converted into a matrix operator equation

Kv = F; (2.2)

whereK = [Kqm]
d
q;m=1; v = (v1(x); :::; vd(x))

T ; F = (f1(y); :::; fd(y))
T : Assume

that �m can be described by the parameter mapping xm(s) = (xm1(s); xm2(s))
: [0; Tm] ! �m with jx0m(s)j = [jx0m1(s)j2+ jx0m2(s)j2]1=2 > 0; where Tm is the
arc length of �m: Using the sinp�transformation[26]

s = Tm'p(t) : [0; 1]! [0; Tm]; p 2 N; (2.3)

with 'p(t) = #p(t)=#p(1) and #p(t) =
R t
0
(sin�t)pdt; the operators (2.1) will be

converted into integral operators on [0,1]. De�ne

(Aqqwq)(t) =

Z 1

0

aqq(t; �)wq(�)d� ; t 2 [0; 1]; (2.4)

and

(Bqmwm)(t) =

Z 1

0

bqm(t; �)wm(�)d� ; t 2 [0; 1]; (2.5)

where aqq(t; �) = � 1
2� ln j2e

�1=2 sin�(t��)j; wm(t) = vm(xm(Tm'p(t)))jx0m(Tm
'p(t))jTm'0p(t) and

bqm(t; �) =

(
� 1
2� ln j

xq(t)�xq(�)
2e�1=2 sin�(t��) j; for q = m;

� 1
2� ln jxq(t)� xm(�)j; for q 6= m;

and xm(t) = (xm1(Tm'p(t)); xm2(Tm'p(t))) (m = 1; ..., d) and jxq(t)�xm(�)j =
[(xq1(t) � xm1(�))

2 + (xq2(t) � xm2(�))
2]1=2: Thus Eq (2.2) becomes

(A+B)W = G; (2.6)

where A =diag(A11; :::; Aqq); B = [Bqm]dq;m=1 andW = (w1; :::; wd)
T ; G = (g1;

..., gd)T with gm(t) = fm(xm(t)):
Because the operator Amm (m = 1; ..., d) is an isometry operator[1;35] from

Hs[0; 1] to Hs+1[0; 1] for any real number s; A is also an isometry operator from
(Hs[0; 1])d to (Hs+1[0; 1])d: Hence Eq (2.6) is equivalent to

(E +A�1B)W = A�1G = ~G: (2.7)
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Since 'p(t) 2 C1[0; 1]; increases[26] on [0,1], and satis�es 'p(0) = 0 and 'p(1) =
1; the solutions of (2.6) are equivalent to those of (2.2).
Now we study the solution singularity for (2.2). We �rst suppose that the

corner points are at Q1; :::; Qd; and at each corner point Qm; the number �m 2
(�1; 1) is de�ned by requiring (1��m)� to be one of the angles \Qm�1QmQm+1;
where Q1 and Qd are the endpoints of the open contour �; i.e., Q1 6= Qd: At the
endpoints Q1 and Qd we de�ne �1 = �d = �1; corresponding to an angle of 2�:
Based on the potential theory, it is known that near the corner Qm the solution
vm(x) =

@um(x)
@n� � @um(x)

@n+ can generally be expected to have a singularity of
the form js � smj�m ; where �m = �j�mj=(1 + j�mj) � � 1

2 and s with s = sm
at Qm is arc parameter. If � is a polygon[27;28;35], however, the singularity
may be weaker than this. Since the singularity in vm may be traced to the
singularities in the potential u(y); it turns out that if u(y) is nonsingular in the
exterior region then the singularity in vm becomes js� smj�m=(1��m); and if it
is nonsingular in the interior the singularity in vm becomes js� smj��m=(1+�m):
Lemma 2.1. (1) Let a function vm(s) = s�gm(s) (0 > � � �1=2); where

gm(s) is di¤erentiable on [0; 1] a su¢ cient number of times and gm(0) 6= 0: Then
the function wm(t) takes the form

wm(t) = c1gm(0)t
(p+1)�+p(1 +O(t2)) as t! 0+: (2.8)

(2) Let a function vm(s) = (1 � s)�~gm(s) (0 > � � �1=2); where ~gm(s) is
di¤erentiable on [0; 1] a su¢ cient number of times and ~gm(1) 6= 0: Then the
function wm(t) takes the form

wm(t) = c2~gm(1)(1� t)(p+1)�+p(1 +O((1� t)2))) as t! 1�; (2.9)

where c1 and c2 are constants.
Proof. (1) Since from the Taylor�s rule we have

vm(s) = �
l
j=0

g
(j)
m (0)

j!
sj+� +O(sl+�+1) as s! 0+ (2.10)

and
'0p(t) � �1j=0�jtp+2j as t! 0+; and �0 > 0; (2.11)

inserting (2.11) into (2.10), we obtain (2.8). Similarly, we can give the proof of
(2).�
Although vm(x) at an angular point Qm (m = 2; :::; d�1) and the endpoints

Q1 and Qd has the singularity, wm(t) (m = 1; :::; d; t 2 [0; 1]) is a smooth
function under (2.3). Below we study the singularities of the integral kernels in
(2.6).
Lemma 2.2. (1) aqq(t; �) is a logarithmically singular function on [0; 1]2:

(2) For jq�mj 6= 1 (i.e., �q = �m or �q \�m = ;), bqm(t; �) is smooth functions
on [0; 1]2: (3) For jq � mj = 1 (i.e., �q \ �m = Q 2 fQm;m = 2; :::; d � 1g);
bqm(t; �) is singular functions[] at the point (0; 1) or (1; 0); and ~bqm(t; �) (=
sin2(�t)bqm(t; �)) and @n

@tn
~bqm(t; �) (n = 1; 2) are smooth functions on [0; 1]2:
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Proof. From the de�nition of aqq(t; �) and bqm(t; �); (1) and (2) are obvious[16;35].
Let xq(t) = xq(Tq'p(t)) 2 �q and xm(�) = xm(Tm'p(�)) 2 �m: Without loss
of generality, assume that xq(0) = (0; 0) = xm(0) = �q \ �m is a vertex of 

with the interior angle �q 2 (0; 2�). Using the cosine theorem we have

log jxq(t)� xm(�)j =
1

2
log[(jxq(t)j � jxm(�)j)2 + 2jxq(t)jjxm(�)j sin2(�q=2)];

(2.12)
where jxq(t)j = jxq(t)�xq(0)j and jxm(�)j = jxm(�)�xm(0)j: It easily see that
jxq(t)� xm(�)j = 0 only as jxq(t)j = jxm(�)j = 0 from (2.12). Hence, bqm(t; �)
exists logarithmic singularity only at angular points (0; 1) or (1; 0): Also let the
origin of coordinates (0; 0) = �q \ �m be a vertex with interior angle �q:
Case I. For �q 2 (0; �)[(�; 2�); from (2.5) we make use of the cosine theorem

and get

~bqm(t; �) = �1=(4�) sin2(�t) ln[a20(t) + a21(�)� 2a0(t)a1(�) cos �q]

= �1=(4�) sin2(�t) ln(a20(t) + a21(�))
�1=(4�) sin2(�t) ln[1� 2a0(t)a1(�) cos �q=(a20(t) + a21(�))]

as a new kernel of integral operator, where a0(t) = jxq(Tq'p(t))j; a1(�) =
jxm(Tm'p(�))j: Obviously if @i

@� i b(t; �) (i = 0; 1; 2) is smooth, then the re-
sults of (3) holds. Without loss of generality, we assume a0(0) = a1(0) = 0:
Since

j2a0(t)a1(�) cos �q=(a20(t) + a21(�))j � j cos �qj < 1;
if we can prove that b(t; �) = sin2(�t) ln(a20(t)+a

2
1(�)) is a bounded function on

[0; 1], then ~bqm(t; �) is continuous. In fact, from '
(j)
p (t)jt=0;1= 0; j = 1; :::; p;

we easily get a(j)i (t)jt=0;t=1 = 0; i = 0; 1, j = 1; :::; p: Thus we only require to
prove that for an arbitrary real number " > 0; b(t; �) is bounded on ["=2; "]2:
For (t; �) 2 ["=2; "]2; it always holds that

jb(t; �)j = O("2j ln "j)! 0; for "! 0;

which means that b(t; �) is bounded. Secondly, we can prove that @
@� b(t; �) and

@2

@�2 b(t; �) are continuous functions on [0; 1]
2: For (t; �) 2 ["=2; "];we obtain

j @
@�
b(t; �)j � j sin2(�t)

2a1(�)jx
0

q(�)j'0p(�)
(a20(t) + a

2
1(�))

j = O("2)O("2p)=O("2p) = O("2):

Similarly, we have

j @
2

@�2
b(t; �)j = O("):

Therefor, @i

@� i b(t; �); i = 0; 1; 2 is a continuous function on [0; 1]
2:

Case II. For �q = �; we have

~bqm(t; �) = � sin2(�t) ln(a0(t) + a1(�))=(2�):

Imitating the above proof, we can obtain that @i

@� i
~bqm(t; �) (i = 0; 1; 2) is con-

tinuous on [0,1]2:�

6



3 The existence and convergence of approxima-
tions by MQM

Let hm = 1=nm; nm 2 N (m = 1; :::; d) be mesh widths and tj = � j = (j �
1=2)hm (j = 1; :::; nm) be node. By the trapezoidal or midpoint rule[10] we
construct the Nyström�s approximate operator Bhqm of the integral operator
Bqm

(Bhqmwm)(t) = hm

nmX
j=1

bqm(t; � j)wm(� j); t 2 [0; 1]; (q;m = 1; :::; d); (3.1a)

which has the error estimate

(Bqmwm)(t)� (Bhqmwm)(t) = O(h2l); for jq �mj 6= 1 (3.1b)

and
(Bqmwm)(t)� (Bhqmwm)(t) = O(h!); for jq �mj = 1 (3.1c)

with

! =

�
min((p+ 1)(�+ 1); p+ 1); p odd
min((p+ 1)(�+ 1); 2p+ 2); p even,

(3.1d)

at worst[10;26]. For the weakly singular operators Amm; by the quadrature
formula[25], we can construct Fredholm approximate operator Ahqq;

(Ahqqwq)(ti) = �
1

2�
hqf

nmX
j=1;t6=�j

ln j2e�1=2 sin�(ti � � j)jwq(� j)g

�j ln j2�e�1=2hq=(2�)jwq(ti)g; i = 1; :::; nq; (3.2)

which has the error estimate[25]

(Ahqqwq)(t)� (Aqqwq)(t) =

�2
�

2l�1X
�=1

� 0(�2�)
(2�)!

[wq(t)]
(2�)h2�+1q +O(h2lq ); t 2 ftig: (3.3)

Set t = ti (i = 1; :::; nq); and we obtain the approximate equations of (2.6)

(Ah +Bh)Wh = Gh; (3.4)

whereWh = (w
h
1 (t1); :::; w

h
1 (tn1); :::; w

h
d (t1); :::; w

h
d (tnd))

T ; Ah =diag(Ah11; :::; A
h
dd);

Ahqq = [aqq(tj ; � i)]
nq
j;i=1; Bh = [Bhqm]

d
q;m=1; B

h
qm = [bqm(tj ; � i)]

nq;nm
j;i=1 ; Gh =

(g1(t1); :::; g1(tn1); :::; gd(t1); :::; gd(tnd))
T ; and

aqq(tj ; � i) =

�
�[hq ln j2e�1=2 sin�(ti � � j)j]=(2�); as i 6= j;
�[hqj ln j2�e�1=2hq=(2�)j]=(2�); as i = j:

(3.5)
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Obviously, Eq (3.4) is a linear equation system with n (= n1+���+nd)�unknown
numbers. Once Wh is solved by (3.4), u(y); y 2 
 can be computed by

uh(y) =
�1
2�

dX
m=1

nmX
i=1

hm[ln jy � xm(ti)j]jx0m(ti)jwhm(ti): (3.6)

From (2.4) and (3.5), we have

Ahmm = �hm=�circular(ln(e�1=2hm); ln(2e�1=2 sin(�hm)); :::; ln(2e�1=2 sin((nm�1)�hm))):

Lemma 3.1. The eigenvalues �k (k = 1; :::; nm) of Ahmm are positive, and
there exists a positive constant c such that �k > c for nm < 4; or �k > 1=(2�nm)
for nm � 4:
Proof. Since Ahmm is a symmetric circulant matrix[11], we have �k = F ("k)

with

F (z) = �hm[ln jhe�1=2j+
nm�1X
j=1

zj ln j2e�1=2 sin(j�=nm)j]; and "k = exp(2�ki=nm):

If nm < 4; then �k > c can be easily veri�ed by direct calculations. If nm � 4;
then �k is estimated as follows:
Step 1. Consider k = 0: Let

�00 = ln jhme�1=2j+
nm�1X
j=1

ln j2e�1=2 sin(j�=nm)j

= �nm=2� lnnm + ln j2nm�1
nm�1Y
j=1

sin(j�=nm)j: (3.7)

We shall discuss the following two cases:
Case (1). For nm = 2l � 1; by the inequality

2x=� < sinx < x; if 0 < x < �=2; (3.8)

we have

22l�2[(l � 1)!]2
(2l � 1)2l�2 <

l�1Y
j=1

sin2
j�

2l � 1 =
nm�1Y
j=1

sin
j�

nm
<
�2l�2[(l � 1)!]2
(2l � 1)2l�2 :

Using Stirling�s rule[9] n! =
p
2�n(n=e)n exp(�=(12n)) (0 < � < 1); we obtain

22l�2[(l � 1)!]2
(2l � 1)2l�2 > 2�e2�2l(l � 1)(1� 1=l)2l�2e�=[6(l�1)]

and
�2l�2[(l � 1)!]2
(2l � 1)2l�2 < 2�(

�

2e
)2l�2(l � 1)e�=[6(l�1)] = 1=B:
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Also since lnB < ln j2nm�1
Qnm�1
j=1 sin(j�=nm)j�1; we get

�0 = ��00=(�nm) > [3=2� ln� � 1=(2l � 1)� 1=[6(2l � 1)(l � 1)]=�;

which implies that �0 > 17=(150�) for l � 3:
Case (2). For nm = 2l; from 0 < (l � 1)=(2l) < 1=2 and (3.8), we derive

[(l � 1)!]2
l2l�2

<
l�1Y
j=1

sin2
j�

2l
=

nm�1Y
j=1

sin
j�

nm
<
�2l�2[(l � 1)!]2

(2l)2l�2
:

Using
�2l�2[(l � 1)!]2

(2l)2l�2
= 2l�(

�

2
)2l�2e(�2l+�=6l)

and the above inequality, we have

�0 = ��00=(�nm) = [1=2 + 1=nm lnnm + 1=nm ln j2nm�1
nm�1Y
j=1

sin(j�=nm)j�1]=�

> [3=2� ln�]=�;

which implies that �0 > c > 0 as nm � 4:
Step 2. To estimate �k; k = 1; :::; nm � 1; we write

�
0

k = ln je�1=2=nmj+
nm�1X
j=1

cos(2kj�=nm) ln j2e�1=2 sin(j�=nm)j

= � lnnm +
nm�1X
j=1

cos(2kj�=nm) ln j2 sin(j�=nm)j: (3.9)

Using the expansions of the  �special function[9]

 (k=n) = �
 � lnn� �=2 cot(k�=n) +
nX
j=1

cos(2kj�=n) ln j2 sin(j�=n)j

and

 (z) = �
 � 1=z + z
1X
j=1

1=[j(j + z)];

we obtain
nm�1X
j=1

cos(2kj�=nm) ln j2 sin(j�=nm)j

= lnnm + �=2 cot(k�=nm)� nm=k + k=nm
1X
j=1

[j(j + k=nm)]
�1

9



and

�
0

k = �=2 cot(k�=nm)�nm=k+k=nm
1X
j=1

[j(j+k=nm)]
�1; 1 � k � nm�1; (3.10)

where 
 is a Euler�s constant. Substituting

cot(k�=nm) = nm=(k�)� k�=(3nm)� 1=45(k�=nm)3 � � � �

�22jBj=(2j)!(k�=nm)2j�1 � � � �

into (3.10), we have

�
0

k = �nm=(2k)� k�2=(6nm)� � � � � 22j+1Bj=(2j)!(k�=nm)2j�1�

� � � �+k=nm
1X
j=1

[j(j + k=nm)]
�1

and

�k = f1=(2k) + k�2=(6n2m) + � � �+ 22j+1Bj=(2j)!(k�=nm)2j�1�=nm

+ � � � �k=n2m
1X
j=1

[j(j + k=nm)]
�1g=�;

where Bj is the Bernoulli number. Since

k�2=(6n2m)� k=n2m
1X
j=1

[j(j+ k=nm)]
�1 > k=n2mf

1X
j=1

[j�2� (j(j+1=2))�1]g > 0;

we obtain

�k > 1=(2�k) + 1=90(k=nm)
3=nm + ::: > 1=(2�k) > 1=(2�nm):

Combining the results of Step 1 and Step 2, the proof of Lemma 2 is completed.
�
From Lemma 3.1 we have the following corollary.
Corollary 3.2. (1) Ahmm is invertible, the conditional number of Ahmm is

O(nm); and jj(Ahmm)�1jj = O(nm) holds, where k � k denotes the spectral norm:
(2) Ah is invertible, the conditional number of Ah is O(n0); and jj(Ah)�1jj =
O(n0) holds, where k � k denotes the spectral norm and n0 = minnm:
In order to discuss the existence and convergence of approximations, we �rst

introduce the subspace and some special operators. De�ne the subspace[16]

C0[0; 1] = fv(t) 2 C[0; 1] : v(t)= sin2(�t) 2 C[0; 1]g

of the space C[0; 1] with the norm jjvjj� = max0�t�1 jv(t)= sin2(�t)j: Let Shm =spanfej(t);
j = 1; ���; nmg � C0[0; 1] be a piecewise linear function subspace with base points
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{tignmi=1; where ej(t) is the basis functions satisfying ej(ti) = �ji: Also de�ne a
prolongation operator Ihm : <nm ! Shm satisfying

Ihmv =

nmX
j=1

vjej(t);8v = (v1; :::; vnm) 2 <nm ; (3.11)

and a restricted operator Rhm : C0[0; 1]! <nm satisfying

Rhmv = (v(t1); :::; v(tnm)) 2 <nm ;8v 2 C0[0; 1]: (3.12)

To prove the approximation convergence, we �rst introduce the following lemma.
Lemma 3.3. The operator sequence fIhq (Ahqq)�1RhqAqq : C3[0; 2�) !

C[0; 2�)g is uniformly bounded and convergent to embedding operator I:
Proof. From the quadrature rule (3.2)-(3.3), let 8� 2 C3[0; 2�) and �hq be

solutions of auxiliary equations Aqq� = � and Ahqq�
h = Rhq�: we have

Aqq�(ti) =

Z 2�

0

aqq(ti; t)�(t)dt =

nqX
i 6=j;j=1

hqaqq(ti; tj)�(tj)+

(
�hq
2�

) ln jhqe
�1=2

2�
j�(tj) + "i; "i = O(h3); i = 1; :::; nq:

Let e(tj) = �h(tj)��(tj); where �h(tj) and �(tj) are the solutions of the above
auxiliary equations at t = tj respectively. From (3.2), we lead to

nqX
i 6=j;j=1

hqaqq(ti; tj)e(tj) + (
�hq
2�

) ln jhqe
�1=2

2�
je(ti) =

nqX
i 6=j;j=1

hqaqq(ti; tj)�h(tj)+

(
�hq
2�

) ln jhqe
�1=2

2�
j�h(ti)�[

nqX
i 6=j;j=1

hqaqq(ti; tj)�(tj)+(
�hq
2�

) ln jhqe
�1=2

2�
j�(ti)] =

�(ti)�[
nqX

i 6=j;j=1
hqaqq(ti; tj)�(tj)+(

�hq
2�

) ln jhqe
�1=2

2�
j�(ti)] =

Z 2�

0

aqq(ti; t)�(t)dt�

[

nqX
i 6=j;j=1

hqaqq(ti; tj)�(tj) + (
�hq
2�

) ln jhqe
�1=2

2�
j�(ti)] = "i = O(h3q);

that is,
Ahqqe = "; eT = (e(t1); :::; e(tn)); "

T = ("1; :::; "n)
T ; (3.13)

and
e = (Ahqq)

�1":

From Lemma 3.1, we have

jjejj = jj(Ahqq)�1"jj = jjRhqA�1qq ��(Ahqq)�1Rhq�jj = jjRhq��(Ahqq)�1RhqAqq�jj = O(h2q):
(3.14)
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Since IhqRhq ! I; the proof of Lemma 3.3 is completed.
Lemma 3.4:Let the open contour � = [dm=1�m satisfy C� 6= 1; and �q =

�m or �q \ �m = ;. Then under parameter transformations (2.3) Nyström�s
approximations Bhqm of integral operators Bqm have

Ihq (Ahqqq )
�1RhqBhmqm

c:c! (Aqq)
�1Bqm; in C[0; 1]! C[0; 1] (3.15)

hold by the trapezoidal or midpoint rule.
Proof. Under the above assumptions and the parameter transformations

(2.3) the kernels bqm(t; �) of operators Bqm are continuous and their high order
derivable are, too, continuous[4;5;35]. By

Ihq (Ahqqq )
�1RhqBhmqm = (Ihq (Ahqqq )

�1RhqAqq)((A
�1
qq )B

hm
qm );

we have

jjIhq (Ahqqq )�1RhqBhmqm jj0;0 � jj(Ihq (Ahqqq )�1RhqAqq)jj0;3jj(A�1qq )Bhmqm jj3;0:

According to Lemma 3.3, there exists a constant c such that

jjIhq (Ahqqq )�1RhqAqqjj0;3 � c: (3.16)

Using the results of [4,5,18] and Lemma 3.3, we obtain that the smooth oper-
ator sequence f(Aqq)�1Bhmqm : C[0; 1]! C3[0; 1] } must be collectively compact
convergent to A�1qq Bqm; which gets the proof of (3.15).
Corollary 3.5[16]. For �q \ �m = Q 2 fQm;m = 2; :::; d � 1g; let the

interior angle �q 2 [0; 2�) (q = 1; ..., d) of open contours � = [dm=1�m (d >
1) with C� 6= 1: Then under the parameter transformation (2.3) Nyström�s
approximations ~Bhmqm of integral operators ~Bqm by the trapezoidal or midpoint
rule have

Ihq (Ahqqq )
�1Rhm( ~Bhmqm )

c:c! (Aqq)
�1 ~Bqm; in C[0; 1]! C[0; 1]; (3.17)

hold, where the kernel ~bqm(t; �) of integral operator ~Bqm is sin2(�t)bqm(t; �):
Replacing (Ahqqq )�1 andBhmqm (m; q = 1; :::; d) by I

hq (A
hq
qq )�1Rhm and IhqBhmqmR

hm ;

we construct an operator L̂h : (C0[0:1])d ! [dm=1Shm : Consider the following
operator equation

(I + L̂h)Ŵh = Ih ~Gh; (3.18)

where ~Gh = (Ah)
�1RhGh and ~G = A�1G: Obviously, if Ŵh is a solution of

(3.18), then RhŴh is a solution of (3.4) ; reversely, if Wh is a solution of (3.4),
then IhWh is a solution of (3.18); where L̂h = (Âh)

�1B̂h = Ih(Ah)
�1RhBh;

Ih = diag(Ih1 ; :::; Ihd); R
h = diag(Rh1 ; :::; Rhd): Below We shall prove that Wh

converge to W:
Theorem 3.6. Let the open contour � = [dm=1�m satisfy C� 6= 1 and �m

(m = 1; :::; d) be smooth curve. Then the operator sequencef(Âh)�1B̂hg is
collectively compact convergent to A�1B in V = (C0[0:1])d;i.e.

(Âh)
�1B̂h

c:c! A�1B: (3.19)
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Proof. Let � = fz : jjzjj � 1; z 2 V g be a unit ball and H = fH(1);H(2); ...,
} be a mesh sequence, where H(n) = fh(n)1 ; :::; h

(n)
d g denote a multi-parameter

step size with max1�m�d h
(n)
m ! 0 as nm ! 1: Take an arbitrary sequence

fZh; h 2 Hg � � � V and Zh = fzh11; :::; zh1n1 ; :::; z
h
d1; :::; z

h
dnd
g with

max
1�m�d

max
1�t�nm

jzmi(t)= sin2(�t)j � 1:

Under the above assumptions we assure that there exists a convergent subse-
quence in f(Âh)�1B̂hZhg: We consider the �rst complement

dX
m=1

Ih1(Ah111)
�1RhmBhm1mR

hqz1h (3.20)

of (Âh)�1B̂hZh: For �q = �m or �q \ �m = ;; by the lemma 3.4 we have

Ih1(Ah111)
�1RhmBhm1m

c:c! A�111 B1m; in C[0; 1]! C[0; 1]:

For �q \ �m = Q 2 fQm;m = 2; :::; d� 1g; we have

jjIh1(Ah111)�1RhmB
hm
1mR

hmzh1mjj0;0 = jjIh1(Ah111)�1Rhm ~B
hm
1m (R

hmzh1m= sin
2(�t))jj0;0

� jjIh1(Ah111)�1RhmA11jj0;3jj(A111)�1 ~B
hm
1m jj3;0jjzh1mjj�:

According to Lemma 3.4 and [4,5,18] there exists a convergent subsequence in
{Ih1(Ah111)

�1 RhmBhm1mR
hmzh1mg: However C0[0; 1] � C[0; 1]; based on the above

two cases, using the results of [4,5,18], we can �nd a in�nite subsequence H(1) �
H such that (3.20) converge as h! 0; h 2 H1: Imitating the above methods, we
can �nd a in�nite subsequence Hd � H1 � H such that f(Âh)�1B̂hZh; h 2 Hdg
is a convergent sequence in V = (C0[0:1])d: Obviously it means

(Âh)
�1B̂h

p! A�1B = L;

where the notation P! denotes the pointwise convergence. Based on the base of
[5, 7], this completes the proof of Theorem 3.7.
Corollary 3.7[4;18]. Let the open contour � = [dm=1�m satisfy C� 6= 1 and

�m (m = 1; :::; d) be smooth curve. Also let h0 = max1�m�d hm be su¢ ciently
small. Then there exits the unique solution Wh in (3.18) and its error estimate
under the norm of V has (3.21) hold at node points.

jjWh �W jj � jj(I + L)�1jj jj(L̂h � L)
~Gjj+ jj(L̂h � L)L̂hW jj

1� jj(I � L̂h)�1(L̂h � L)L̂hjj
: (3.21)

4 Multiparameter asymptotic expansions of er-
rors and splitting extrapolation algorithms

Now we prove the main result.
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Theorem 4.1. Let the open contour � = [dm=1�m satisfy C� 6= 1 and �m
(m = 1; :::; d) be smooth curve. Also let fm 2 C4(�m) � C4(�m): Then when
p � 6; there exists vector function � = (�1;:::; �d)T 2 (C0[0; 1])d independent of
h = (h1; :::; hd)

T such that the following multi-parameter asymptotic expansions

W � Ŵh = h3�+ 0(h30); (4.1)

hold at node points, where h3 = (h31; :::; h
3
d); h0 = max1�m�d hm:

Proof. When p � 6; based on (3.1)-(3.4), we have

(Âh + B̂h)(W � Ŵh) = IhRh(A+B)W � (Âh + B̂h)W

= diag(h31; :::; h
3
d)I

hRh$ + 0(h30);

where $T = ($1; :::; $d); $m = �
0
(�2)W 00; and

(I + L̂h)(W � Ŵh) = diag(h31; :::; h
3
d)(Âh)

�1IhRh$ + 0(h30):

We construct the following auxiliary equations

(I + L)� = A�1$; (4.2)

and its approximate equations

(I + L̂h)�
h = (Âh)

�1IhRh$: (4.3)

Substituting (4.3) into (4.2), we get

(I + L̂h)(W � Ŵh � diag(h31; :::; h3d)�h) = 0(h30):

Since (I + L̂h)�1 is uniformly bounded from the theorem 3.6, we obtain

W � Ŵh � diag(h31; :::; h3d)�h = 0(h30): (4.4)

Because �h is the approximate solution of (4.3); replacing �h of (4.3) by �, we
get the proof of Theorem 4.1.
Making use of the splitting extrapolation algorithms[13;16;20;24;32] according

to the multi-parameter asymptotic expansions (4.3), we can get approximations
of a higher order accuracy 0(h30) by solving some coarse grid discrete equations
in parallel. The process of the splitting extrapolation algorithms is as follows.
Step1. Take h(0) = (h1; :::; hd) and h(m) = (h1; :::; hm=2; :::; hd), and solve

(3.4) according to h(m); m = 1; :::; d in parallel and obtain the solutions
Wh(m)(ti); m = 1; :::; d:
Step2. Compute h3�Richardson extrapolation on the coarse grid points

W �(ti) =
8

7
[
dX

m=1

Wh(m)(ti)� (d�
7

8
)Wh(0)(ti)]: (4.5)

Then compute ui(y) (y 2 
n�) according to (3.6).
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Step3. According to (4.7), have

jW (ti)�
1

d

dX
m=1

Wh(m)(ti)j � jW (ti)�
8

7
[
dX

m=1

Wh(m)(ti)� (d�
7

8
)Wh(0)(ti)]j+

(
8d� 7
7

)j1
d

dX
m=1

Wh(m)(ti)�Wh(0)(ti)j � (
8d� 7
7

)j1
d

dX
m=1

Wh(m)(ti)�Wh(0)(ti)j+0(h30):

(4.6)
Then compute the right side of (4.6) and obtain a posteriori error estimate.

5 The stability analysis

To study the stability of MQM, we �rst introduce the following known result.
Lemma 5.1[14]. (1) De�ne jDj = [jdij j] for any matrix D = [dij ]; then its

spectral radius holds �(D) � �(jDj): (2) If jDj � C; then �(D) � �(C): (3) If
the diagonal matrix D � 0 and the matrix C � 0 with Re�i(D � C) > 0; the
matrix jM1j � D and jM2j � C; then (a) M1 �M2 is a nonsingular matrix; (b)
j(M1 �M2)

�1j � (D � C)�1; (3) jdet(M1 �M2)j � det(D � C):
Lemma 5.2. Let � (C� 6= 1) be an arbitrarily closed smooth curve. Assume

that Ah and Bh are the discrete matrices de�ned by (3.2) and (3.1) respectively.
Then the eigenvalues j�ij (i = 0; 1; :::; n � 1) of discrete matrix Kh=Ah+Bh
satisfy

�c � j�ij � ĉh�1; i = 0; 1; :::; n� 1; (5.1)

where �c and ĉ are two positive constants independent of h:
Proof. From (3.1) and (3.2), the diagonal entries of discrete matrices Ah

and Bh are aii= a0 =
�h
2� ln j

e�1=2h
2� j and bii = � h

2� ln je
1=2x0(ti)j respectively.

Two cases are discussed.
Case I. When 1 � e1=2�� � e1=2jx0(t)j � e1=2�̂ > 0; we choose � = a0 + c0;

where c0 = � h
2� ln(e

1=2��) � 0: Let D =diag(�; ..., �) and C = [ c0n ]
n
i;j=1:

Obviously, the matrix D�C is a circular matrix[9]. From the theory of circular
matrix, the eigenvalues ��k of matrix D�C are given by

��k = ((a0 + c0)�
c0
n
)�

n�1X
j=1

c0
n
"jk; k = 0; :::; n� 1;

where "k = exp(2k�i=n) and i =
p
�1:Hence, by some manipulations we have

��k =

�
1
2n +

1
n lnn � ch; as k = 0;

1
2n +

1
n lnn�

1
n ln(e

1=2��) � ch; as k = 1; :::; n� 1;

where c is a positive constant number independent of n:
Case II. When e1=2�� � e1=2jx0(t)j � e1=2�̂ � 1; we choose � = a0�c0; where

c0 =
h
2� ln(e

1=2��) � 0: Let D =diag(�; ..., �) and C = [ c0n ]
n
i;j=1: Eigenvalues ��k
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of matrix D�C are given by

��k = ((a0 � c0)�
c0
n
)�

n�1X
j=1

c0
n
"jk

=

�
1
2n +

1
n lnn� 2c0; as k = 0;

1
2n +

1
n lnn� c0; as k = 1; :::; n� 1;

where "k = exp(2k�i=n) and i =
p
�1: Since �� is a bounded positive number,

there always exists a positive integer number n0 such that n � n0 � (e1=2��)2 �
1: Hence, when n � n0 we have ��k � ch; where c is a positive constant number
independent of n:
Denote M1 = Kh=Ah+Bh and M2 = [0]

n
i;j=1: Obviously, jM1j � D; jM2j �

C andKh =M1�M2: Since Re ��i(D�C) = ch; from Lemma 5.1, Kh =M1�M2

is invertible and

0 < j��i(Kh
�1)j � �(Kh

�1) � �(jKh
�1j)

� �((D�C)�1) � ch�1;

i.e.,
j��i(Kh)j � (�((D�C)�1))�1 � ch; i = 0; :::; n� 1:

This is the lower bound of j�ij in (5.1).
Next we derive the upper bound of eigenvalues j�ij of Kh=Ah+Bh: From

[14] we have �(Kh) = �(Ah+Bh) � �(Ah) + �(Bh): Moreover, from Lemma 3.1
and [5] we obtain �(Ah) = c1; and from [5] we have �(Bh) � c2; where c1 and
c2 are two positive constants. Hence, �(Kh) � c1 + c2 and the upper bound of
j�ij in (5.1) follows. This completes the proof of Lemma 5.2.
Based on Lemma 5.2, we have the following theorem.
Theorem 5.3. Let the open contour � = [dm=1�m satisfy C� 6= 1 and

�m (m = 1; :::; d) be smooth curve. Also assume that Ah and Bh are discrete
matrices de�ned by (3.2) and (3.1) respectively. Then the bound of condition
number is

Cond.(Kh) = O(�h�1), �h = min
1�m�d

hm: (5.2)

6 The numerical experiments

We carry out the numerical experiments for the problem (1.1) by MQM and
h3�Richardson extrapolation or SEM algorithms, and verify the errors and
stability analyses made in the above sections.
Example 1[28;34;36]. Here the equation is

�
Z
�

log jx� yjv(x)dsx = 1 (y 2 �); (6.1)
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with � a straight-line segment of length 2: speci�cally,

� = f(x1; 0) : �1 � x1 � 1g:

Since the right-hand side of (6.1) is 1, its solution[28;34;36] is

v(x) = (� log 2)�1(1� x21)�
1
2 (� 1 < x1 < 1);

and

C� = exp[�(
Z
�

v(x)dsx)
�1];

which has the exact value C� = 0:5 for an interval of length 2. We compute the
values of u(0; 1) and u(1:2; 0); where

u(y) = �
Z
�

log jx� yjv(x)dsx: (6.2)

u(0; 1) (= � 1
log 2 log(

1+
p
2

2 )) and u(1:2; 0) (= � 1
log 2 log(

1:22+
p
1:22�1
2 )) are the

potential at two points on the plane, one on the peependicular bisector of �,
and one on the axis. Since � has open ends, the exact solution v(x) is expected
to have singularities of the form jx� x0j�

1
2 at the two ends.

Table 1.1. Compute results using '2

n emax e1n eE1n e2n eE2n eCn eECn
23 7.290E-2 9.807E-5 1.148E-5 3.868E-4 2.588E-5 3.331E-5 9.568E-6
24 5.138E-2 2.212E-6 1.837E-6 2.570E-5 3.000E-6 1.253E-5 1.127E-6
25 3.632E-2 1.884E-6 2.258E-7 5.884E-7 1.969E-7 2.553E-6 1.387E-7
26 2.569E-2 4.332E-7 2.081E-8 2.458E-7 4.540E-8 4.405E-7 1.727E-8
27 1.816E-2 7.876E-8 3.513E-9 7.046E-8 5.670E-9 7.018E-8 2.157E-9
28 1.284E-2 1.291E-8 4.390E-10 1.376E-8 7.087E-10 1.066E-8 2.695E-10
29 9.084E-3 1.999E-9 5.487E-11 2.341E-9 8.859E-11 1.568E-9 3.369E-11
210 6.423E-3 2.979E-10 6.859E-12 3.701E-10 1.107E-11 2.255E-10 4.212e-12
211 4.542E-3 4.324E-11 5.596e-11 3.187E-11

Table 1.2. Compute results using '4

n emax e1 eE1n e2n eE2n eCn eECn
23 1.397E-2 1.816E-4 8.366E-6 3.448E-5 1.143E-5 4.772E-4 6.081E-6
24 5.320E-3 3.002E-5 3.047E-7 1.431E-5 4.852E-7 5.433E-5 1.921E-7
25 1.956E-3 3.486E-6 9.801E-9 2.214E-6 1.534E-8 6.623E-6 6.106E-9
26 7.001E-4 4.272E-7 3.124E-10 2.902E-7 4.886E-10 8.226E-7 1.943E-10
27 2.483E-4 5.313E-8 9.951E-12 3.670E-8 1.556E-11 1.026E-7 6.184E-12
28 8.791E-5 6.633E-9 3.169E-13 4.601E-9 4.958E-13 1.282E-8 1.966E-13
29 3.205E-5 8.289E-10 1.011E-14 5.756E-10 1.628E-14 1.603E-9 6.700E-15
210 1.813E-5 1.036E-10 5.868E-16 7.196E-11 9.536E-16 2.003e-10 3.447E-16
211 9.143E-6 1.295E-11 8.996e-12 2.504e-11

17



Using the sinp�transformation '2 and '4; we compute the results in Table 1.1
and 1.2, respectively. We list the maximal errors enmax = max1�i�n jv�vhj (n =
2i; i = 3; :::; 11), where v and vh are the solutions of (6.1) and the corresponding
to discrete equation (3.4) respectively: the errors e1n = ju(0; 1) � uh(0; 1)j;
e2n = ju(1:2; 0) � uh(1:2; 0)j and eCn = jC� � Ch� j (n = 2i; i = 3; :::; 11), and
the �rst extrapolation errors eE1n = j8e1n2 � e1nj=7; eE2n = j8e2n2 � e2nj=7 and
eECn = j8eEC n

2
� eECnj: Based on (3.1d), when p = 2 and 4; ! = min(3=2; 6) and

min(5=2; 10) respectively. Hence, there do not exist asymptotic expansions of
solution errors, which imply that the extrapolation algorithm is not e¤ective.
In Tables 1.1 and 1.2 the numerical results of the second, forth, sixth and eighth
column completely agree with our theory.

Table 1.3. Compute results using '6

n j�minj j�maxj Cond E¤�C emax emin
23 0.179 2.161 12.02 1.108 9.201E-3 3.848E-3
24 0.087 2.183 25.01 6.383 1.163E-3 4.456E-5
25 0.043 2.188 50.43 12.83 1.455E-4 2.155E-5
26 0.021 2.189 101.0 25.70 1.817E-5 5.524E-7
27 0.018 2.190 202.2 51.42 2.272E-6 2.128E-8
28 0.005 2.190 404.4 102.8 2.841E-7 1.664E-10
29 0.002 2.190 808.9 205.7 3.551E-8 8.137E-11

In Table 1.3, we list the minimal eigenvalue j�minj and maximal eigenvalue
j�maxj, and the condition numbers, Cond= j�maxj

j�minj ; and the e¤ective condition

numbers E¤�C=
ff

uu�j�minj ; as well as the minimal errors e
n
min =min1�j�n jv�vhj;

and the maximal errors enmax = max1�i�n jv� vhj (n = 2i; i = 3; :::; 9): In Table
1.3, we have

Condjn=2m+1

Condjn=2m
� 2 and emaxjn=2m+1

emaxjn=2m
� 8 (m = 3; :::; 8);

which indicate (5.2) and (4.1) perfectly.

Table 1.4. Compute results using '6

n 23 24 25 26 27 28 29

e1n 4.246E-4 2.293E-5 2.895E-6 3.612E-7 4.513E-8 5.641E-9 7.051E-10
eE1n 8.672E-5 3.228E-8 7.219E-10 2.213E-11 7.044E-13 2.237E-14
eEE1n 2.764E-6 2.961E-10 4.432E-13 1.325E-14 3.690E-16
e2n 5.686E-4 6.422E-5 8.034E-6 1.004E-6 1.255E-7 1.568E-8 1.960E-9
eE2n 7.834E-6 6.871E-9 1.701E-10 9.790E-12 3.451E-13 1.111E-14
eEE2n 1.813E-8 4.605E-10 4.618E-10 4.042E-14 3.361E-16
eCn 6.588e-4 8.120E-5 1.012E-5 1.264E-6 1.580E-7 1.975E-8 2.468E-9
eECn 1.317E-6 3.302E-8 9.465E-10 2.941E-11 9.285E-13 2.890E-14
eEECn 8.398E-9 8.812E-11 1.735E-13 9.741E-15 1.193E-16
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In Table 1.4, we list the errors e1n = ju(0; 1) � uh(0; 1)j; e2n = ju(1:2; 0) �
uh(1:2; 0)j and eCn = jC��Ch� j (n = 2i; i = 3; :::; 9), and the �rst extrapolation
errors eE1n = j8e1n2 � e1nj=7; eE2n = j8e2n2 � e2nj=7 and eECn = j8eEC n

2
� eECnj;

as well as the second extrapolation errors eEE1n = j32eE1n2 � eE1nj=31; eEE2n =

j32eE2n2 � e
E
2nj=31 and eEECn = j32eEC n

2
� eECnj=31:

Now, let us examine the numerical data In Table 1.4. we have numerically

e1njn=2m+1

e1njn=2m
� 8; e2njn=2m+1

e2njn=2m
� 8 and eCnjn=2m+1

eCnjn=2m
� 8 (m = 3; :::; 8)

to indicate (4.1) perfectly, which imply that the �rst extrapolation is very ef-
fective. However, when p = 6; from (3.1d), ! = min(7=2; 14): Based on (4.1),
there only exists the �rst extrapolation. For Table 1.4, although eEE1n ; e

EE
2n and

eEECn are improved, the e¤ectiveness is not remarkably. If we us 'p(t) (p � 10);
these can largely be improved.

Table 1.5. Compute results using '6

y1nennn 23 24 25 26 27 28 29

1+2*10�2 7.917E-4 �1.148E-4 1.419E-5 1.774E-6 2.216E-7 2.771E-8 3.463E-9
1+2*10�3 4.317E-3 3.197E-4 �3.302E-5 4.124E-6 5.154E-7 6.442E-8 8.052E-9
1+2*10�4 4.243E-3 2.457E-4 4.689E-5 �5.775E-6 7.217E-7 9.020E-8 1.127E-8
1+2*10�5 1.560E-3 7.555E-4 5.690E-5 �6.350E-6 7.938E-7 9.921E-8 1.240E-8
1+2*10�6 5.362E-3 1.930E-4 3.171E-5 6.247E-6 �7.734E-7 9.667E-8 1.208E-8
1+2*10�7 7.066E-3 1.492E-4 8.266E-5 6.028E-6 �7.068E-7 8.837E-8 1.104E-8
1+2*10�8 6.913E-3 4.367E-4 5.651E-5 3.181E-6 6.263E-7 �7.804E-8 9.754E-9
1+2*10�9 6.764E-3 6.116E-4 1.604E-5 7.841E-6 5.515E-7 �6.765E-8 8.454E-9
1+2*10�10 6.706E-3 5.991E-4 3.454E-5 3.763E-6 3.114E-7 5.796E-8 �7.250E-9
1+2*10�11 6.687E-3 5.846E-4 5.330E-5 1.703E-6 6.970E-7 4.872E-8 �6.172E-9
1+2*10�12 6.681E-3 5.789E-4 5.254E-5 2.640E-6 1.128E-7 3.131E-8 5.168E-9
1+2*10�13 6.679E-3 5.770E-4 5.114E-5 4.660E-6 1.723E-7 5.951E-8 4.038E-9
1+2*10�14 6.678E-3 5.763E-4 5.058E-5 4.644E-6 1.906E-7 1.803E-8 2.147E-9

Below we calculate the values of u(y1; y2) at the neighbor of singular point
(1; 0): From (6.2), for jy1j > 1 and y2 = 0; exact solution u(y1; y2) is u(y1; 0)

=� 1
log 2 log

y1+
p
y21�1
2 : In Table 1.5, we list the errors en = ju(y1; 0)� uh(y1; 0)j

(n = 2i; i = 3; :::; 9): From Table 1.5, as y1 ! 1; the approximate accuracy is
still O(h30), which does not happen.
Next, we compute the derivable values @u(y1;y2)

@y1
at the neighbor of singular

point (1; 0): From (6.2), at points y = (y1; 0) (jy1j > 1); we derive

@u(y1; 0)

@y1
= �

Z 1

�1

1

y1 � x1
v(x1)dx1
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= � 1

� log 2

Z 1

�1

1

y1 � x1
1p
1� x21

dx1 = �
1

log 2

1p
y21 � 1

:

Table 1.6. Compute results using '6

n eny1 1+10�1 1+10�2 1+10�3 1+10�4 1+10�5

25 e5 1.950E-6 8.245E-5 1.953E-4 1.577E-4 4.685E-3
26 e6 2.438E-7 1.029E-5 2.535E-5 3.220E-5 1.002E-5

eE6 4.979E-11 1.258E-8 1.071E-6 5.933E-5 6.578E-4
27 e7 3.046E-8 1.286E-6 3.167E-6 4.030E-6 1.096E-6

eE7 2.397E-11 6.086E-10 1.691E-9 4.814E-9 1.792E-7
28 e8 3.806E-9 1.607E-7 3.958E-7 5.036E-7 1.372E-7

eE8 1.004E-12 2.164E-11 6.886E-11 1.414E-10 1.523E-10
29 e9 4.758E-10 2.009E-8 4.948E-8 6.294E-8 1.716E-8

eE9 3.484E-14 7.150E-13 2.391E-12 6.265E-12 2.085E-11

Table 1.7. Compute results using '6

n eny1 1+10�6 1+10�7 1+10�8 1+10�9 1+10�10

25 e5 3.677E-2 1.265E-1 1.381E-1 7.215E-1 1.103E+0
26 e6 5.760E-4 2.827E-3 2.688E-2 9.648E-2 1.790E-1

eE5 5.912E-3 1.485E-2 5.046E-2 2.133E-1 3.622E-1
27 e7 2.625E-5 1.052E-4 5.247E-4 6.163E-4 1.597E-2

eE6 5.229E-5 2.835E-4 4.440E-3 1.307E-2 4.382E-2
28 e8 3.276E-6 1.374E-5 4.474E-5 1.278E-4 3.544E-4

eE7 6.062E-9 6.718E-7 2.382E-5 5.807E-5 2.686E-3
29 e9 4.095E-7 1.719E-6 5.600E-6 1.655E-5 4.687E-5

eE8 8.834E-11 7.462E-10 8.965E-9 6.505E-7 2.936E-6

In Table 1.6 and 1.7, we list the errors en = j@u(y1;0)@y1
� @uh(y1;0)

@y1
j=j@u(y1;0)@y1

j
(n = 2m; m = 5; 6; 7; 8; 9) and the extrapolation errors eEn = j8en2 � enj=7 at the
neighbor of singular point (1; 0):
Example 2[28]. Let � be an open contour of length 2, in the form of a

right-angled wedge:

� = f(x1; 0) : 0 � x1 � 1g [ f(0; x2) : 0 � x2 � 1g:

The integral equation is chosen as

�
Z
�

ln jy � xjv(x)dsx = 1; for (y1; y2) 2 �: (6.3)

We compute the numerical solution of

u(y) = �
Z
�

ln jy � xjv(x)dsx

at (0:5; 0:5), whose true value u(0:5; 0:5) takes 0:621455343.
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From [28], although the exact solution v(x) is expected to have a O(jx �
x0j�

1
3 ) singularity at the right-angled corner, the dominant singularities in v(x)

occur at the two ends, with O(jx� x0j�
1
2 ). Based on [15,16], using '6(t) in the

periodical transformation (5.3), we obtain the numerical results at Q = (0:5; 0:5)
by MQMs and list Cond. and Cond-e¤ in Tables 3.1. Let nm (m = 1; 2) be
the number of uniform partition on [0; 1] corresponding to the mth edge �m
of �: Based on (5.9), we can obtain the splitting extrapilation errors eE(Q) =
juE(Q)� u(Q)j; where

uE(Q) =
8

7
[
dX

m=1

uh(m)(Q)� (d�
7

8
)uh(0)(Q)], d = 2;

is the splitting extrapilation values. The errors juh(Q)�u(Q)j and the splitting
extrapilation errors eE(Q) are also listed in Table 2.1, where (n1; n2) = (8; 8)
and (16; 16):

Table 2.1. The errors, Cond. and Cond�e¤ for (6.3).

(n1; n2) juh � uj j�1j j�nj Cond. Cond-e¤
(4,4) 4.413E-2 0.104 4.287 40.865 12.042
(8,4) 2.166E-2 0.113 4.147 36.420 11.979
(4,8) 2.166E-2 0.113 4.147 36.420 12.049
eE 7.229E-3
(8,8) 1.738E-3 0.055 4.374 78.474 22.395
(16,8) 9.452E-4 0.056 4.312 76.007 23.820
(8,16) 9.452E-4 0.056 4.312 76.007 23.856
eE 7.495E-5
(16,16) 1.383E-4 0.028 4.378 154.828 44.046
(32,16) 7.805E-5 0.028 4.357 153.680 47.609
(16,32) 7.805E-5 0.028 4.357 153.680 47.618
eE 5.184E-7
(32,32) 1.725E-5 0.014 4.375 308.348 87.754
(64,32) 9.703E-6 0.014 4.369 308.234 95.208
(32,64) 9.703E-6 0.014 4.369 308.234 95.210
eE 1.350E-9

From Table 2.1 we have

juh � uj(4;4)
juh � uj(8;8)

= 25:39;
juh � uj(8;8)
juh � uj(16;16)

= 12:56 and
juh � uj(16;16)
juh � uj(32;32)

= 8:01; (6.4)

Hence, the SEMs can provide more accurate solutions. Note that from Table 2.1

with the total number n =
2X

m=1

nm = 32 and 64; the error of SEMs is 5.184E-7

and 1.350E � 9; respectively: In contrast, when n = 256 the uh = 0:62125 is
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given in [28] by Galerkin methods, where the approximating space Sh is the
piecewise constant space. This fact displays the e¢ ciency of MQMs and SEMs.
Since all corners of � are right-angled, it follows from results that in [27,28]

v(x) is expected to have singularities of the form jx � x0j�1=3 at the corners
in the exterior. By Galerkin methods, the errors are jjvh1 � v1jj2 = O(h4=3)
and juh1 � u1j2 = O(h4=3): However, for the case in which the point x lies in
the interior, v(x) is much less singular, that is, the singularities are only of the
form jx � x0j: By Galerkin methods, the errors are jjvh2 � v2jj2 = O(h3) and
juh2 � u2j = O(h13=6):
To close this paper, let us make a few concluding remarks.
1. The above numerical results show that the MQMs not only possess high

accuracy, but also h3�Richaedson extrapolation or SEM and a posteriori error
estimate are very e¤ective. Since the discrete matrix of BIE is full, by using SEM
the larger the scale of problems are, the more e¤ective the methods are. These
results further verify that it is reasonable to construct the MQMs in the paper
and it is correct to give the convergence theory. Especially, the results in tables
display that the approximate accuracies are very high. It further shows that
the accuracy order can be largely enhanced by h3�Richaedson extrapolation or
SEM.
2. To the MQM there exist the following advantages: (1) each elements

of discrete matrixes calculated are very simple and straightforward, not need
calculate any singular integrals; (2) it is a high accuracy algorithm O(h3): How-
ever, the theoretic study of the MQM is more di¢ cult than that of Galerkin and
collocation methods, because its theory is no longer within the framework of the
projection theory. In the present paper we only discuss Dirichlet�s problems,
and to mixed boundary problems or Neumann�s problems we can also establish
the corresponding to algorithms by using these results.

3. This paper explores the traditional stability analysis, the traditional
Cond. = O(h�1). The small bounds of condition number are signi�cant to
stability of numerical the �rst kind boundary integral equations for Laplace�s
equations. This paper is the �rst time to explore stability analysis for the open
contour, and to derive (5.2), which grants the MQMs an excellent stability.
4. Numerical experiments are carried out for the arbitrary boundary � with

C� 6= 1 by MQM and SEM, and the computed results coincide with the new
stability analysis perfectly.
5. The extrapolation and SEM techniques are applied to the �rst kind

boundary integral equations, to improve the solution accuracy.
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