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Abstract

This paper presents mechanical quadrature methods (MQM) for solv-
ing first-kind boundary integral equations (BIE) on open contours, which
possesses high accuracy O(hg’) and low computing complexities, where
ho = maxi<m<d hm and hn, (m =1, ...,d) is the mesh witdth of a curved
edge I';,, of open contours I'. The paper shows that errors posses multi-
variate asymptotic expansions with h3, (m =1,...,d) for open contours.
By using the splitting extrapolations the higher precision approximations
and a posteriori estimates are obtained. Moreover, by the stability analy-
sis, we conclude that mechanical quadrature methods provide not only
high accuracy algorithms O(hg), but also excellent stability. Numerical
examples are provided to support our theoretical analysiss.
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ture method, splitting extrapolation, a posteriori estimate, open contour,
stability analysis.

1 Introduction

*Corresponding author, e-mail address: zcli@math.nsysu.edu.tw



By the layer potential theory, Dirichlet’s problems of plane Laplace equations

Au =0, in Q,
{ u= f,on T, (1.1)
are converted into the first kind boundary equation (BIE)
1
~5- v(z)In|z —ylds, = f(y), y €T, (1.2)
TJr

where I' = U _ T, is the open contour with edges I',,, and Q = R?\I', and

|x — y| is the Euclidean distance. In (1.2) the unknown function v(x) = 66“7—5?) -

3;751), where n is a unit outward normal derivative at a point z € I'. From the

1,2,23,27,28,35]

known results! , as the logarithmic capacity (transfinite diameter)
Cr # 1, there exists a unique solution in (1.2). As soon as v(z) is solved from
(1.2), u(y) (y € Q) can be calculated by

u(y) = _1 v(z)In|x — ylds,, y € Q. (1.3)
2 Jr

Based on [3, 27,28 35|, the solution v(z) of (1.2) is usually singular at the
endpoints and corner points. These singularities degrade the rates of conver-
gence when numerical methods such as Galerkin and collocation methods are
applied![!:3:6:7:12:27.28,31,35] " and g0 one introduces modifications in order to re-
store the optimal rate of convergence. One possible modification is the aug-
mented method for which the approximating spaces are augmented by appro-
priate singular functions which mimic the behaviour of the exact solution at the
endpoints and corner points of the open contour I'. This modification applied
to the Galerkin method with piecewise polynomial test and trial functions has
been analyzed by Stephan and Wendland in [31]. Another modification is to
grade the mesh in a suitable way near the endpoints and corner points. Its appli-
cation to the Galerkin method with piecewise constant test and trial functions
has been analyzed by Yan and Sloan [36], and its application to the collocation
method with piecewise linear trial functions has been done by Costabel, Ervin,
& Stephan [8]. In [35] Yan also provided the method of cosine change of vari-
able for the numerical solution of (1.2) with Galerkin and collocation methods,
and obtained the superconvergence. However, quadrature methods are gener-
ally considered to be more practical since in their numerical implementation
the computation of the matrix elements is less costly than in the correspond-
ing collocation and Galerkin methods. Although some of the more practical
quadrature methods have been considered by Kress and Sloan [19], by Saranen
and Sloan [30] and by Saranen [29], one never provide mechanical quadrature
methods (MQMs) for (1.2) with the open contour T'.

In the paper, MQMs are constructed for solving BIE of the first kind with the
open contour I', and the convergence theories are given. Firstly, we make use of
the Sidi’s quadrature rules!?®! to calculate weakly singular integrals. Secondly,
by calculating directly we get the eigenvalue expression of discrete matrices in



the special case and estimate their super-bound and lower-bound. Finally, by
using perturbation theory and Anselon’s collective compact theory!®, we not
only obtain that it is reasonable to construct MQMs, but also show that the
condition number of discrete matrices is only O(h™!). For MQMs the most of
work can not only be saved, without calculating any singular integrals, but
also the accuracies are very high O(h?). Especially, the singularity solutions at
concave points and endpoints heavily dampen the approximate accuracy. The
accuracy of Galerkin methods?"-28 is only O(h'*¢) (0 < € < 1) and the accuracy
of collocation methods[®3 is even lower. In contrast, the accuracy of MQMs in
the paper is as high as O(h?). In addition, collocation methods®?! are greatly
restricted in practice, since the interior angle § can only be in 6 € (29.85°,
330.15Y).

It is a very important study field in numerical mathematical how to enhance
further the approximate accuracy. Extrapolation algorithms and splitting ex-
trapolation algorithms (SEM) are very effective methods to improve approxi-
mate accuracy. SEM[3:20:21] based on multivariate asymptotic expansions of
errors are a very effective parallel algorithm, which possesses a high order of
accuracy and almost optimal computational complexity. Since Lin and Lii pub-
lished the first paper2? in 1983, SEMs have been applied to many problems,
e.g., the multidimensional numerical integrations!?!, finite differential methods
and finite element methods!?!l. Using Galerkin methods, Riide and Zhou[?¥ es-
tablished multi-parameter extrapolation methods for BIE system of the second
kind on polygonal domains. Assuming that 2 was a bounded, simply connected
region with a smooth boundary I' and the inverse matrix of discrete equation
existed and was uniformly bounded, Xu and Zhaol*? established an extrapo-
lation method for solving BIE from the boundary value problem of the third
kind. Graham, Qun, and Rui- feng'® established extrapolation of Nystrom
solutions of boundary integral equations of the second kind on non-smooth do-
mains. Huang and Liil'>'6) constructed the MQM and their extrapolations for
solving BIE of Steklov eigenvalue problems and MQM and SEM for solving
BIE of linear elasticity Dirichlet problems on polygons. By MQMs, this paper
shows that multivariate asymptotic expansions with h? (i = 1,...,d) for open
contours. Thus, once discrete equations with some coarse meshed partitions
are solved in parallel, the approximate accuracy can be greatly improved by
the SEMs; moreover, a posteriori asymptotic error estimate as self-adaptive
algorithms is derived.

This paper is organized as follows: In Section 2, the singularity of the
integral kernels and solutions are eliminated for the first kind BIE. In Section 3,
for the open contours, MQMs are constructed, and approximation convergences
are proved. In Section 4, the multivariate asymptotic expansions with h3 (i =
1,...,d) of errors are shown, and SEMs are established. In Section 5, the stability
analysis is made. In Section 6, some numerical examples are reported and
numerical results show further that the methods are worthy of recommending.



2 The singularity analysis of the integral kernels
and solutions

Let T = U4, _ T, (d > 1) be open contours with Cr # 1, and [',,, (m =1, ...,
d) be a piecewise smooth curve. Define boundary integral operators on T,

1

(Egmvm)(y) = =5~

5 Um(x)logly — z|dsy,y € Ty (myqg=1,...,d), (2.1)

Thus Eq (1.2) can be converted into a matrix operator equation
Kv=F, (2.2)

where K = [Kqm]? =1, v = (01(2), ..., va(2))T, F = (f1(y), ..., fa(y))”. Assume
that I',,, can be described by the parameter mapping &, (s) = (£m1(s), Tm2(s))

: [0.T] — Dy with [, ()] = [[2)y ()24 [215()[2]/2 > 0, where T, is the
arc length of I',,,. Using the sin? —transformation[26

s ="Tnp,(t) :[0,1] — [0,T}], p€ N, (2.3)
with ¢, (t) = J,(t)/0,(1) and J)( fo sin wt)Pdt, the operators (2.1) will be
converted into integral operators on [0 1]. Define

1
(Aaqe)t) = [ a7y ()i, ¢ € 0.1, (2.4

and .
(quwm)(t) = qu(ta T)’LUm(T)dT, te [07 1]3 (25)

0
where agq(t,7) = — 5= In[2e7 V2 sinw(t—7)|, Wi (£) = Vi (@i (T, (1)) 20, (T
©p ()| Ty, () and

q(t)=74(7)

_ 1 _Ta\l)=Tq\T)
qu(tﬂ') = 217r 1n|2€_1/2 sin(t— T)l for g =m
L infrg(t) ~ Em (D)l for g £ m,

and 2, (t) = (Tm1(Tnep(t), Tm2(Tme, (1)) (m - d) and |z (t) —zm (7)| =
(g1 (t) — 2m1(7))? + (wg2(t) — xmz(r))z]l/Q Thub Eq (2.2) becomes

(A+B)W =G, (2.6)

where A =diag(A11, ..., Agq), B = [Bym]? ey and W = (w1, ..., wa)", G = (g1,

e 9a) T With g (t) = fin (2 ().

Because the operator A,,,, (m =1, ..., d) is an isometry operator!*3% from
H*[0,1] to H*T1[0, 1] for any real number s, A is also an isometry operator from
(H*[0,1])¢ to (H**1[0,1])¢. Hence Eq (2.6) is equivalent to

(E4+A'B)W =A"'G=G. (2.7)



Since ¢, (t) € C*°[0,1], increases?®! on [0,1], and satisfies ¢,(0) = 0 and ¢, (1) =
1, the solutions of (2.6) are equivalent to those of (2.2).

Now we study the solution singularity for (2.2). We first suppose that the
corner points are at 1, ..., @4, and at each corner point Q,,, the number x,, €
(=1,1) is defined by requiring (1—x,,,)7 to be one of the angles ZQ,;,—1Qm@m+1,
where Q1 and Q4 are the endpoints of the open contour T', i.e., Q1 # Q4. At the
endpoints @1 and @4 we define x; = x4 = —1, corresponding to an angle of 2.
Based on the potential theory, it is known that near the corner @,, the solution
Um(x) = w — 8"7’7@ can generally be expected to have a singularity of
the form [s — s,,|Pm, where 8,, = —|x,|/(1 + [X;n]) = —3 and s with s = s,
at Q,, is arc parameter. If I' is a polygon[?7:28:35 however, the singularity
may be weaker than this. Since the singularity in v, may be traced to the
singularities in the potential u(y), it turns out that if u(y) is nonsingular in the
exterior region then the singularity in v,, becomes |s — s, [Xm/(*=Xm) " and if it
is nonsingular in the interior the singularity in v,, becomes |s — sm\’xm/(HXm).

Lemma 2.1. (1) Let a function v,,(s) = s%gm(s) (0 > a > —1/2), where
9m($) is differentiable on [0, 1] a sufficient number of times and g¢,,,(0) # 0. Then
the function w,,(t) takes the form

Wy () = €19 (0)tPTVHP(1 4 O(t?)) as t — 0. (2.8)

(2) Let a function v,,(s) = (1 — 8)%gm(s) (0 > B > —1/2), where G, (s) is
differentiable on [0, 1] a sufficient number of times and §,,(1) # 0. Then the
function wy, (t) takes the form

Wy (1) = €2Gm (1)(1 — )PV (1 L O((1 - 1)) ast — 17, (2.9)

where ¢; and co are constants.
Proof. (1) Since from the Taylor’s rule we have

(7)

v (8) = Eézowsj+a +O(s"T ) as s — 0F (2.10)
J!
and .
@ (t) ~ Z;‘;O(ﬁt”“] ast — 07, and &g > 0, (2.11)

inserting (2.11) into (2.10), we obtain (2.8). Similarly, we can give the proof of
(2).0
Although v,,(x) at an angular point Q,, (m = 2,...,d— 1) and the endpoints
Q@1 and Qg has the singularity, w,,(t) (m = 1,...,d, t € [0,1]) is a smooth
function under (2.3). Below we study the singularities of the integral kernels in
(2.6).

Lemma 2.2. (1) a,(t,7) is a logarithmically singular function on [0, 1]2.
(2) For |g—m| # 1 (i.e.,, Ty =T, or Ty N, = 0), by (¢, 7) is smooth functions
on [0,1]%. (3) For |g—m| =1 (ie., Ty NTy = Q € {Qm,m = 2,...,d — 1}),
bym (t,T) is singular funﬂctjons” at the point (0,1) or (1,0), and by (¢, 7) (=
sin? (1t)bgm (t,7)) and %qu(tﬂ') (n = 1,2) are smooth functions on [0, 1]%.



Proof. From the definition of ay, (¢, 7) and by, (¢, 7), (1) and (2) are obvious'%-3%),
Let z4(t) = 24(Typ, (1)) € Ty and (1) = 20 (T, (7)) € T'pp. Without loss
of generality, assume that z,(0) = (0,0) = z,,(0) =T, NT,, is a vertex of
with the interior angle 3, € (0,27). Using the cosine theorem we have

log|aq(t) — m(T)| = %log[ﬂwq(tﬂ = lzm(7))? + 2laq(t)]Jom (7)| sin*(B,/2)],
(2.12)
where |z4(t)] = |24(t) — 24(0)] and |z, (7)]| = |2m (7) — 2,(0)]. It easily see that
|£q(t) — 2m (7)| = 0 only as |z4(t)| = |2m(7)] = 0 from (2.12). Hence, by, (¢, T)
exists logarithmic singularity only at angular points (0,1) or (1,0). Also let the
origin of coordinates (0,0) =T, NT',, be a vertex with interior angle 6,.
Case I. For 0, € (0, m)U(m, 27), from (2.5) we make use of the cosine theorem
and get

bym (t,7) = —1/(47) sin®(rt) In[a2(t) + a3 () — 2a0(t)a1 (7) cos b,
= —1/(4x) sin®(7t) In(ai(t) + a?(7))
—1/(47) sin(nt) In[1 — 2a0(t)ay (1) cos O,/ (ai(t) + a3 (7))]

as a new kernel of integral operator, where ag(t) = |z,(Ty¢,(t))], ai(r) =
|2 (Timpp(7))|. Obviously if aa—;ib(t,T) (1 = 0,1,2) is smooth, then the re-

sults of (3) holds. Without loss of generality, we assume ag(0) = a;1(0) = 0.
Since
12a0(t)ay (7) cos 0,/ (ad(t) + ai(r))| < |cosb,| < 1,

if we can prove that b(t,7) = sin®(nt) In(a2(t) 4+ a?(7)) is a bounded function on
[0,1], then qu(t,T) is continuous. In fact, from goéj)(t)hzo,l =0,j=1,...p,
we easily get al(j)(t)|t:0,t:1 =0,7=0,1, 5 =1,...,p. Thus we only require to
prove that for an arbitrary real number € > 0, b(¢,7) is bounded on [g/2,€]?.
For (¢, 7) € [¢/2,¢]?, it always holds that

|b(t, )| = O(e*|In¢e|) — 0,for € — 0,
which means that b(¢, 7) is bounded. Secondly, we can prove that %b(t, 7) and
8‘9—:217(15,7) are continuous functions on [0, 1]2. For (¢,7) € [¢/2, €],we obtain

2a1(7) |y (1) |0}, (7)

(a%(t) + a%(T)) | = O(E )O(E p)/O(E p) = 0(6 )

| 2b(t, | < sin? (mt)
or

Similarly, we have

|55b(t.7)| = OG).

Therefor, aa—:ib(t, 7),i=0,1,2 is a continuous function on [0, 1]2.
Case II. For 0, = 7, we have

Eqm(t, T)=— sin? (mt) In(ao(t) + a1 (7)) /(27).

Imitating the above proof, we can obtain that %Eqm(tﬁ) (¢ =0,1,2) is con-
tinuous on [0,1]2.00



3 The existence and convergence of approxima-
tions by MQM

Let hy, = 1/np, ny € N (m = 1,...,d) be mesh widths and t; = 7; = (j —
1/2)hy, ( = 1, ..., n,) be node. By the trapezoidal or midpoint rule!*® we
construct the Nystréom’s approximate operator Bgm of the integral operator
Bym

Mm

(Bgmwm)(t) = hm qum(t)Tj)wm(Tj), tel0,1], (¢ym=1,...,d), (3.1a)

j=1

which has the error estimate

(Bamwim)(t) = (Bynwm) () = O(h*), for [q —m| # 1 (3.1b)
and
(Bgmwm)(t) — (quwm)(t) = O(h*),for [ —m| =1 (3.1c)
with
L — | min((p+1)(e+1),p+1), podd (3.14)
min((p + 1)(a + 1),2p + 2), p even, '
at worst[1®26] For the weakly singular operators A,,,, by the quadrature

formulal[?®!, we can construct Fredholm approximate operator Al

Nm,

(Afgwe)(t:) = *hq{ > f2esinm(t; — 75)wy(75)}
J=1,t#7;
—|In |[27eY2h, /(2m) Jwy(t:)},i = 1, ..., ng, (3.2)

which has the error estimatel25]

(quwq)(t) — (Agqwq)(t) =

)}(2“)h2“+1 +O(h2),t € {t;}. (3.3)

25

Set t =t; (i =1,...,nq), and we obtain the approximate equations of (2.6)

(An + Br)Why = G, (3.4)
where W), = (wh (¢, T)L wh(ty,), - LWy "(ty), .. ( DT A —dla%(xin, ...,Afjd)7
Al};q = [GQQ(tPTl)] Bh - [ z};m](qi,m 17 = [qu(t]’T )]j,i:lm’ Gh =
(gl(tl)a ~~~7gl( n1) 7gd(t1) 7gd( nd))T7

—[hgIn|2e Y 2sin7(t; — 7;)]/(27), as i # j,

Gaq(tj Ti) = { ~[hg|In |2me=1 /2R, /(27)[]/ (27), a8 i = j. (3:5)



Obviously, Eq (3.4) is a linear equation system with n (= ny+---+ng)—unknown
numbers. Once W}, is solved by (3.4), u(y), y € 2 can be computed by

d Nm,
@)= S Y halnly — ma@l ). (36)
m=1i=1

From (2.4) and (3.5), we have

h
Amm

= —hy, /meircular(In(e ™Y 2h,, ), In(2e Y2 sin(7 k), ..., In(2e "2 sin((ny —1)whim ).

Lemma 3.1. The eigenvalues \; (k = 1,...,n,,) of A are positive, and
there exists a positive constant ¢ such that Ay > ¢ for n,,, < 4, or A\, > 1/(27n,,)
for n,, > 4.

Proof. Since A" is a symmetric circulant matrix'!l, we have A\, = F(ey)
with

N —1
F(z) = —hp[In|he™ 2|+ Z 2 [2e7 Y2 sin(jm/np,)|], and e, = exp(2mki/ny, ).
j=1

If n,, < 4, then Ay > ¢ can be easily verified by direct calculations. If n,, > 4,
then )\ is estimated as follows:
Step 1. Consider k = 0. Let

Ny — 1
Ay = In |hy,e” V2] + Z In |2~ Y2 sin(j7 /n )|
j=1
Nm —1
= /2 — Inn,, +In|2"m 1 H sin(§7/nm)|. (3.7)
j=1

We shall discuss the following two cases:
Case (1). For n,, = 2l — 1, by the inequality

2r/m <sinz <z, if0<z<7/2 (3.8)

we have

920-21(1 _ 1112 =1 : M —1 : 20-27(] _ 1112
—[( _) ) H sin? JT H sin JT < T =7l [( _) ]
(21 — 1)2=2 i 20-1 i N, (20 — 1)2-2

Using Stirling’s rulel®) n! = v27n(n/e)” exp(6/(12n)) (0 < § < 1), we obtain

20—2 _ 112
W > 2me? (1 — 1)(1 — 1/1)220/160-1)

and - 2
W < 2#(%)2172(1 _ 1)69/[6(171)] _ I/B.



Also since In B < In [27m 1 [ Ysin(jm/nm )|, we get
Ao = —Ay/(mnm) > [3/2—Inm—1/(21 — 1) — 1/[6(21 — 1)(I — 1)/,

which implies that Ao > 17/(1507) for [ > 3.
Case (2). For n,, = 2I, from 0 < ({ —1)/(2l) < 1/2 and (3.8), we derive

(1-1) 21 - 1))?
[ 121 2 < Hsm H sm (2[1()212”

Using

201—2 2
T (2[1()12:21)!] :2l7r(g)2l_2e(_2l+9/61)

and the above inequality, we have

Ny — 1
Ao = =N/ (Tnm) = [1/2+ 1/np Innp, + 1/ng I |20 T sinGin /)| ~')/x
j=1
> [3/2 — Inn]/m,
which implies that A\g > ¢ > 0 as n,,, > 4.
Step 2. To estimate A,k =1,...,n,, — 1, we write
, Ny —1
A, =Inle™V2/n,,| + Z cos(2kj7 /nm ) In |21/ 2 sin(j /1 )|
j=1
N —1
=—lan,, + Z cos(2kjm/np) In |2 sin(j7/ny,)|. (3.9)
j=1

Using the expansions of the ¢ —special function!®!

Y(k/n) = —v—Inn — w/2cot(kxw/n) + Zcos(?kjﬂ/n) In |2sin(jm/n)|

j=1
and -
Y(z)=—y—1/z+23 1/ +2)],
j=1
we obtain »
Z cos(2kjm /ny,) In|2sin(j7/ny,)|
j=1
= Inn,, + 7/2cot(km/ny,) — np/k+ k/np, Z[j(j +k/nm)]
j=1



and

)\;€ = 7/2 cot(kT/Nm)—Nm [k+E/nm, i[j(j—kk/nm)]*l,l <k <nn,—1, (3.10)

j=1
where v is a Euler’s constant. Substituting
cot(km /N = Ny ) (k) — knt/(3n,,) — 1/45(k7 /ny,)> —

2By (27)! )
into (3.10), we have

Ne =~/ (2R) = ke (6mn) — - — BBy (27! )

[e.°]

— ek > [+ R /mm)]

j=1

and

e = {1/(2k) + kx?/(6n2) + - - - + 22j+1Bj/(2j)!(kﬂ'/nm)zjflﬂ'/nm

oo

e =k/n2 Y [+ B/n)] T

=1
where Bj is the Bernoulli number. Since

oo

k? [ (6n5,) — k/n3, > [ +k/na)] ™ > k/ni D 17 - (GG +1/2) 7' > 0,

Jj=1 j=1
we obtain
e > 1/(27k) + 1/90(k/nm)? /1 + ... > 1/(27k) > 1/(270,,).

Combining the results of Step 1 and Step 2, the proof of Lemma 2 is completed.
O

From Lemma 3.1 we have the following corollary.

Corollary 3.2. (1) A% is invertible, the conditional number of A% is
O(nm), and |[(AR )| = O(n,,) holds, where || - || denotes the spectral norm.
(2) Ay, is invertible, the conditional number of A is O(ng), and ||(An) 7| =
O(no) holds, where || - || denotes the spectral norm and ng = min n,,.

In order to discuss the existence and convergence of approximations, we first

introduce the subspace and some special operators. Define the subspace[t?]
Co[0,1] = {v(t) € C[0,1] : v(t)/sin?(xt) € C[0,1]}

of the space C[0, 1] with the norm ||v||* = maxo<;<; |v(t)/ sin®(nt)|. Let S"m =span{e;(t),
j=1,-,nn}t C Cpl0,1] be a piecewise linear function subspace with base points

10



{ti}im, where e;(t) is the basis functions satisfying e;(t;) = ¢;;. Also define a
prolongation operator I"m : R"m — Shm satisfying

Mm

Ihmy = Zvjej(t),Vv = (V1 .0y Up,, ) € R, (3.11)
j=1

and a restricted operator R"= : Cy[0,1] — R™ satisfying
R'my = (v(th), ...y v(tn,,)) € R™™ Vo € Cyl0,1]. (3.12)

To prove the approximation convergence, we first introduce the following lemma.
Lemma 3.3. The operator sequence {I"(A}l)" R Ay, « C3[0,21) —

C[0,2m)} is uniformly bounded and convergent to embedding operator 1.
Proof. From the quadrature rule (3.2)-(3.3), let V¢ € C3[0,27) and (;52 be

solutions of auxiliary equations Agq¢ = p and qu h — Rha p. we have

27 Mg
Ao(t) = [ ana(ts 0018t = > gt (i t)0(85)+
0 i#j.j=1
(—hq hge~1/?
2w 27

Let e(t;) = ¢"(t;) — ¢(t;), where ¢" (t;) and ¢(t;) are the solutions of the above
auxiliary equations at t = ¢; respectively. From (3.2), we lead to

)In| lo(t) + &i, i = O(h%),i = 1,...,n,.

- —hg.,  hge /2 -
D hgagg(tit)e(t;) + ( 27:)111| q% le(t:) = Y Pytaq(tist;)dy(t;)+
i#5,5=1 i#j,j=1
—h hge /2 a _h hoe—1/2
(S |70y ()= D yaaltis )0(t5)+ (52 In | 22— |6(t:)] =
i#5,j=1
o —hy . hee /2 2m
p(ti)f[ Z hqaqq(tiatj)¢(tj)+( o )ln| o W(tz)] = aqq(tht)qs(t)dt*
i#5,j=1 0
o —hg,,  hee”'/?
[0 hataaltist)(t) + (54 In | 22— |o(t:)] = = = O(2),
i#5,5=1
that is,
Aqu =¢, el = (e(t),....,e(tn)), el = (e1,...,en)7, (3.13)
and
h \—1
e=(4;,) ¢

From Lemma 3.1, we have

llell = 1(AG,) " "ell = [|R" Ay p—(Agy) " R pl| = |th¢—(qu)—1thAqg¢|| T O(hy).
3.14

11



Since "« Rha — I, the proof of Lemma 3.3 is completed.

Lemma 3.4.Let the open contour I' = U%Zlfm satisfy Cr # 1, and I'; =
I, or 'yNT,, = 0. Then under parameter transformations (2.3) Nystrom’s
approximations B(’;m of integral operators By,, have

1" (Als) " R Bl 25 (Agq) ™ Bam, in C[0,1] — C[0, 1] (3.15)

hold by the trapezoidal or midpoint rule.

Proof. Under the above assumptions and the parameter transformations
(2.3) the kernels by, (¢, 7) of operators B, are continuous and their high order
derivable are, too, continuous!*?35. By

I (All) " RM Bl = (1 (All) " RM A (A Blin),
we have
117 (AGe) ™ R By llo.o < ||(1" (Aga) ™ R Agq)lol|(Agg ) Bgi 1s.0-
According to Lemma 3.3, there exists a constant ¢ such that
11 (Aga) T R Aggllos < c. (3.16)

Using the results of [4,5,18] and Lemma 3.3, we obtain that the smooth oper-
ator sequence {(Agq) "' Blm : C[0,1] — C?[0,1] } must be collectively compact
convergent to A;qqum, which gets the proof of (3.15).

Corollary 3.5!'6, For I'yNTy =Q € {Qm,m = 2,...,d — 1}, let the
interior angle 0, € [0, 27) (¢ = 1, ..., d) of open contours I' = U4, _ T, (d >
1) with Cr # 1. Then under the parameter transformation (2.3) Nystrom’s
approximations Bg;;; of integral operators qu by the trapezoidal or midpoint
rule have

Iha(Aba) " R (Bl ) %5 (Agq) ™' Bym, in C[0,1] — C[0, 1], (3.17)

hold, where the kernel by, (t,7) of integral operator By, is sin?(mt)bgm (t, 7).
Replacing (Ag3)~" and Bl (m,q = 1,...,d) by I"1(Ags) " R"m and " Blw R,
we construct an operator Ly, : (Cp[0.1])? — U _, S Consider the following

operator equation o ~
(I + Lp)Wy, =I"Gh, (3.18)

where Gj, = (A)"R"G), and G = A'G. Obviously, if W, is a solution of
(3.18), then R"W), is a solution of (3.4) ; reversely, if W), is a solution of (3.4),
then I"W), is a solution of (3.18); where Ly = (A,) " 'Bj, = I"(A,) " 'R"By,
I" = diag(Iy,, ..., In,), R" = diag(Rp,, ..., Rn,). Below We shall prove that W),
converge to W.

Theorem 3.6. Let the open contour I' = Ufnzlfm satisfy Cr # 1 and T,
(m =1, ..., d) be smooth curve. Then the operator sequence{(A,) " 'B} is
collectively compact convergent to A1 B in V = (Cy[0.1])%,i.e.

(A)7'By <5 A7'B. (3.19)

12



Proof. Let © = {z: ||z|| < 1,2 € V} be a unit balland H = {HMV H®?) ..
} be a mesh sequence, where H(™ = {h§"), - hgln)} denote a multi-parameter

step size with maxi<,,<q hs,?) — 0 as n,, — oo. Take an arbitrary sequence
{Zn,he HY CO CV and Z, = {20y, .., 28\, ., 2l zfl‘nd} with

; in? <1
,Jax =max |2mi(t)/ sin”(nt)] < 1

Under the above assumptions we assure that there exists a convergent subse-
quence in {(A) "B, Z,}. We consider the first complement

d
> I (AT R B Ry, (3.20)

m=1
of (flh)’léhZh. ForI'y =T, or I', NI, = 0, by the lemma 3.4 we have
(Al =L Rhm Bl €5 AT By, in C[0,1] — C[0, 1].
For T'yNTy, =Q € {Qm,m=2,...,d — 1}, we have
177 (AR LR Bl R 2l oo = (|1 (AL) ™ RP Bl (RP 28,/ sin? (7)) oo

< I (AR TR Ao sl (Afy) T B

I3 ol 281"

According to Lemma 3.4 and [4,5,18] there exists a convergent subsequence in
{1 (Al)=1 Rhm B Rhm 20 Y However Co[0, 1] € C[0, 1], based on the above
two cases, using the results of [4,5,18], we can find a infinite subsequence H") ¢
H such that (3.20) converge as h — 0, h € H;. Imitating the above methods, we
can find a infinite subsequence Hy C Hi C H such that {(flh)’lBhZh, h e Hg}
is a convergent sequence in V = (Cp[0.1])¢. Obviously it means

(A}L)iléh LN A7IB = L,

where the notation = denotes the pointwise convergence. Based on the base of
[5, 7], this completes the proof of Theorem 3.7.

Corollary 3.74'8], Let the open contour I' = UZ _ T, satisfy Cr # 1 and
I'yy (m =1, ..., d) be smooth curve. Also let hg = max<m<q hm be sufficiently
small. Then there exits the unique solution W" in (3.18) and its error estimate
under the norm of V has (3.21) hold at node points.

L, — L)G L, — L)L,
||Wh—WH§||(I+L)_1||||( h )GH+||( h ) 1W|| (321)

1—[|(I = L)Y (Ly, — L) Ly||

4 Multiparameter asymptotic expansions of er-
rors and splitting extrapolation algorithms

Now we prove the main result.
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Theorem 4.1. Let the open contour I' = U% _ T, satisfy Cr # 1 and T,
(m =1, ..., d) be smooth curve. Also let f,, € C*(T,,) x C*(T,,). Then when
p > 6, there exists vector function ¢ = (¢; ..., #4)T € (Cp[0,1))¢ independent of
h = (hi, ..., hq)T such that the following multi-parameter asymptotic expansions

W —W" =n%p+0(hd), (4.1)

hold at node points, where h® = (h$,..., h3), ho = maxi<m<a hm.
Proof. When p > 6, based on (3.1)-(3.4), we have

(Ap + Bp)(W = W") = I"R"(A+ B)W — (A, + Bp,)W
= diag(h3, ..., h3)I"R"w + 0(hY),
where w! = (w1, ..., 4), @m = CI(—2)W”, and
(I + Lp)(W — W) = diag(h?, ..., h3)(An) """ R @ + 0(h3).
We construct the following auxiliary equations
(I+L)p=A"w; (4.2)
and its approximate equations
(I+Lyp)¢" = (Ay) " I"R'w. (4.3)
Substituting (4.3) into (4.2), we get
(I 4 Lp)(W = W" — diag(h3, ..., h3)é") = 0(h3).
Since (I + f/h)_l is uniformly bounded from the theorem 3.6, we obtain
W —Wh — diag(h3, ..., h3)¢" = 0(h). (4.4)

Because ¢ is the approximate solution of (4.3); replacing ¢" of (4.3) by ¢, we
get the proof of Theorem 4.1.

Making use of the splitting extrapolation algorithms!!3:16:20.24:32] 5ccording
to the multi-parameter asymptotic expansions (4.3), we can get approximations
of a higher order accuracy 0(h3) by solving some coarse grid discrete equations
in parallel. The process of the splitting extrapolation algorithms is as follows.

Stepl. Take h(® = (hy,...,hg) and h"™) = (hy,..., R /2, ..., hq), and solve
(3.4) according to R(™, m = 1, ..., d in parallel and obtain the solutions
Wh(m) (tl), m = ]., ceoy d.

Step2. Compute h3—Richardson extrapolation on the coarse grid points

7

d
W*(t;) = %[Z Wi (t:) = (d = )Wy (t:)]. (4.5)

Then compute u;(y) (y € Q\I') according to (3.6).

14



Step3. According to (4.7), have

7
- = Z Whom (8)] < [W () — = Z Wiom (ti d = Wy (t3)][+
m 1
)L ¢ L ¢
ﬁ Z nem (t:) =Wy (8:)] < ( g Z o (1) =W (£:)[+0(hg).

(4.6)
Then compute the right side of (4.6) and obtain a posteriori error estimate.

5 The stability analysis

To study the stability of MQM, we first introduce the following known result.

Lemma 5.11'4. (1) Define |D| = [|d;;|] for any matrix D = [d;;], then its
spectral radius holds p(D) < p(|D|). (2) If |D| < C, then p(D) < p(C). (3) If
the diagonal matrix D > 0 and the matrix C > 0 with Re\;(D — C) > 0; the
matrix [M7| > D and |Ms| < C, then (a) My — My is a nonsingular matrix; (b)
|(My — Ma)™| < (D —C)~%; (3) | det(My — Ms)| > det(D — C).

Lemma 5.2. Let I (Cr # 1) be an arbitrarily closed smooth curve. Assume
that Aj, and By, are the discrete matrices defined by (3.2) and (3.1) respectively.
Then the eigenvalues |A;| (i = 0,1,...,n — 1) of discrete matrix Kp=A,+B},
satisfy

e> Nl >ehti=0,1,...,n—1, (5.1)

where ¢ and ¢ are two positive constants independent of h.

Proof. From (3.1) and (3.2), the diagonal entries of discrete matrices Ay,
and By, are a;= ap = 52 1In |5 L 2 B and b;; = —£ In|e/22’(¢;)| respectively.
Two cases are discussed

Case I. When 1 > e!/211 > e'/2|z' (t)| > €'/2f1 > 0, we choose a = ag + co,
where ¢ = —Z-In(e'/?1) > 0. Let D =diag(c, ..., a) and C' = (2] =1-
Obviously, the matrix D—C' is a circular matrix[®). From the theory of circular
matrix, the eigenvalues \j, of matrix D—C' are given by

N — (&)
A = (a0 + co) — Zgi 0,1,

where ¢, = exp(2kmi/n) and i = v/—1.Hence, by some manipulations we have

2n

5=+ ~lnn— %ln(el/zﬂ) >ch,ask=1,...,n—1,

< {1+1lnn>ch,ask:0,
A = w
2n

where ¢ is a positive constant number independent of n.
Case IT. When /2 > /2|2 (t)| > 61/2,& > 1, we choose o = ag—cp, where
co = 2= In(e'/?j1) > 0. Let D =diag(a, ..., @) and C [2]7;—1- Eigenvalues Ay
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of matrix D—C' are given by

_ %-F%lnn—QCo»aSk:O’
2t Dnn o, as b= Lon 1

where €;, = exp(2kmi/n) and i = /—1. Since ji is a bounded positive number,
there always exists a positive integer number ng such that n > ng > (61/2ﬂ)2 >
1. Hence, when n > ng we have A, > ch, where c is a positive constant number
independent of n.

Denote My = Kp,=Ap+B), and My = [O]szl. Obviously, | M| > D, |Ms| <
C and Kj, = M, —M,. Since Re \;(D—C) = ch, from Lemma 5.1, Kj, = M, —M,
is invertible and

0 < [X(En™ D] < p(KEn™") < p(|Kn~)

< p((D-C)7Y) <ch™,

ie.,
INi(En)| > (p((D=C)~1)) "t > ¢h, i =0,...,n— 1.

This is the lower bound of |\;| in (5.1).

Next we derive the upper bound of eigenvalues |\;| of K,=Ap+Bj. From
[14] we have p(Kp) = p(Ar+DBp) < p(Ap) + p(Bp). Moreover, from Lemma 3.1
and [5] we obtain p(Ap) = ¢1, and from [5] we have p(Bp) < c¢a, where ¢; and
co are two positive constants. Hence, p(Kj) < ¢1 + ¢ and the upper bound of
[A;] in (5.1) follows. This completes the proof of Lemma 5.2.

Based on Lemma 5.2, we have the following theorem.

Theorem 5.3. Let the open contour I' = Ufnzlfm satisfy Cr # 1 and
Iy, (m =1, ..., d) be smooth curve. Also assume that A, and B}, are discrete
matrices defined by (3.2) and (3.1) respectively. Then the bound of condition
number is

Cond.(Kp,) =O(h™"), h = min h,y,. (5.2)

6 The numerical experiments
We carry out the numerical experiments for the problem (1.1) by MQM and
h3—Richardson extrapolation or SEM algorithms, and verify the errors and

stability analyses made in the above sections.
Example 112834361 Here the equation is

—/log |z —ylv(z)ds, =1 (y € T), (6.1)
r
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with I' a straight-line segment of length 2: specifically,

I'={(z1,0): =1 < a3 <1}.

Since the right-hand side of (6.1) is 1, its solution[?:34:36 jg

and

v(z) = (rlog2) (1 — 22

Cr = exp[—(/v(m)dsw)_l],

T

)72 (—1<ay <1),

which has the exact value Cr = 0.5 for an interval of length 2. We compute the
values of ©(0,1) and u(1.2,0), where

u(y) = —/log |z — ylv(z)ds,. (6.2)
r
2
u(0,1) (= — k5 log(1572)) and u(1.2,0) (= — by log(RZEZ=1)) are the

potential at two points on the plane, one on the peependicular bisector of T,
and one on the axis. Since I' has open ends, the exact solution v(x) is expected
to have singularities of the form |z — 2|2 at the two ends.

Table 1.1. Compute results using ¢,

n €max €1in et €2n e, €Cn egn
23 7.290E-2 | 9.807E-5 1.148E-5 3.868E-4 2.588E-5 3.331E-5 9.568E-6
21 5.138E-2 | 2.212E-6 1.837E-6 2.570E-5 3.000E-6 1.253E-5 1.127E-6
2° 3.632E-2 | 1.884E-6 2.258E-7 5.884E-7 1.969E-7 2.553E-6 1.387E-7
26 2.569E-2 | 4.332E-7 2.081E-8 2.458E-7 4.540E-8 4.405E-7 1.727E-8
27 1.816E-2 | 7.876E-8 3.513E-9 7.046E-8 5.670E-9 7.018E-8 2.157E-9
28 1.284E-2 | 1.291E-8 4.390E-10 | 1.376E-8 7.087E-10 | 1.066E-8 2.695E-10
29 9.084E-3 | 1.999E-9 5.487E-11 | 2.341E-9 8.859E-11 | 1.568E-9 3.369E-11
210 [ 6.423E-3 | 2.979E-10 | 6.859E-12 | 3.701E-10 | 1.107E-11 | 2.255E-10 | 4.212¢-12
21T 1 4.542E-3 | 4.324E-11 5.596e-11 3.187E-11

Table 1.2. Compute results using ¢,
n €max €1 eﬁb €2n eg;;, €Cn €gn
23 1.397E-2 | 1.816E-4 8.366E-6 3.448E-5 1.143E-5 4.772E-4 | 6.081E-6
21 5.320E-3 | 3.002E-5 3.047E-7 1.431E-5 4.852E-7 5.433E-5 | 1.921E-7
2° 1.956E-3 | 3.486E-6 9.801E-9 2.214E-6 1.534E-8 6.623E-6 | 6.106E-9
26 7.001E-4 | 4.272E-7 3.124E-10 | 2.902E-7 4.886E-10 | 8.226E-7 | 1.943E-10
27 2.483E-4 | 5.313E-8 9.951E-12 | 3.670E-8 1.556E-11 | 1.026E-7 | 6.184E-12
28 8.791E-5 | 6.633E-9 3.169E-13 | 4.601E-9 4.958E-13 | 1.282E-8 | 1.966E-13
29 3.205E-5 | 8.289E-10 | 1.011E-14 | 5.756E-10 | 1.628E-14 | 1.603E-9 | 6.700E-15
210 [ 1.813E-5 | 1.036E-10 | 5.868E-16 | 7.196E-11 | 9.536E-16 | 2.003e-10 | 3.447E-16
211 1 9.143E-6 | 1.295E-11 8.996e-12 2.504e-11
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Using the sin” —transformation ¢, and ¢,, we compute the results in Table 1.1
and 1.2, respectively. We list the maximal errors el = maxj<i<, [v—2"| (n =
21,4 =3,...,11), where v and v" are the solutions of (6.1) and the corresponding

to discrete equation (3.4) respectively. the errors ey, = |u(0,1) — u"(0,1)],
ean = |u(1.2,0) — u"(1.2,0)| and ecy, = |Cr — CR| (n = 2%, i = 3,...,11), and
the first extrapolation errors ef], = [8e1z — e1,]/7, €3, = [8ezn — €2,|/7 and

ek, = ‘865% — £, |. Based on (3.1d), when p = 2 and 4, w = min(3/2,6) and
min(5/2, 10) respectively. Hence, there do not exist asymptotic expansions of
solution errors, which imply that the extrapolation algorithm is not effective.
In Tables 1.1 and 1.2 the numerical results of the second, forth, sixth and eighth
column completely agree with our theory.

Table 1.3. Compute results using ¢q

n |)\min| ‘/\maxl Cond Eff_C €max €min
2310179 | 2.161 12.02 | 1.108 | 9.201E-3 | 3.848E-3
2% 10.087 | 2.183 | 25.01 | 6.383 | 1.163E-3 | 4.456E-5
2° 1 0.043 | 2.188 | 50.43 | 12.83 | 1.455E-4 | 2.155E-5
26 1°0.021 | 2.189 | 101.0 | 25.70 | 1.817E-5 | 5.524E-7
27 10.018 | 2.190 | 202.2 | 51.42 | 2.272E-6 | 2.128E-8
28 10.005 | 2.190 | 404.4 | 102.8 | 2.841E-7 | 1.664E-10
29 10.002 | 2.190 | 808.9 | 205.7 | 3.551E-8 | 8.137E-11

In Table 1.3, we list the minimal eigenvalue |Apin| and maximal eigenvalue
[Amax|, and the condition numbers, Cond:%7 and the effective condition
numbers Eff_ C=—1f R,

u:[Amin|’

: o oM

and the maximal errors e}, .
1.3, we have

as well as the minimal errors e}

= maxi<j<n [v—0"| (n =2% i =3,...,9). In Table

=minj<j<p [v—v

Cond‘nzz,,H,l ernax|n:2nz+1 -

Cond|,,_5m o Emax|n=am (m r28),
which indicate (5.2) and (4.1) perfectly.
Table 1.4. Compute results using g

n 23 24 25 26 27 28 29
ein | 4.246E-4 | 2.293E-5 | 2.895E-6 | 3.612E-7 | 4.513E-8 | 5.641E-9 | 7.051E-10
el | 8.672E-5 | 3.228E-8 | 7.219E-10 | 2.213E-11 | 7.044E-13 | 2.237E-14
eFF 1 2.764E-6 | 2.961E-10 | 4.432E-13 | 1.325E-14 | 3.690E-16
es, | 0.686E-4 | 6.422E-5 | 8.034E-6 | 1.004E-6 | 1.255E-7 | 1.568E-8 | 1.960E-9
el | 7.834E-6 | 6.871E-9 | 1.701E-10 | 9.790E-12 | 3.451E-13 | 1.111E-14
eFF | 1.813E-8 | 4.605E-10 | 4.618E-10 | 4.042E-14 | 3.361E-16
ecn | 6.588e-4 | 8.120E-5 | 1.012E-5 | 1.264E-6 | 1.580E-7 | 1.975E-8 | 2.468E-9
eZ, | 1.317E-6 | 3.302E-8 | 9.465E-10 | 2.941E-11 | 9.285E-13 | 2.890E-14
eEF [ 8.398E-9 | 8.812E-11 | 1.735E-13 | 9.741E-15 | 1.193E-16
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In Table 1.4, we list the errors ey,

|u(0,1) — u"(0,1)], ean = |u(1.2,0) —

u"(1.2,0)| and ey, = |Cr — CF| (n = 2%, i = 3,...,9), and the first extrapolation

B E _ E _ |QoE E
errors ey, = [8e1z — e1n|/7, €3, = [8e2z — €2n|/T and g, = [8eca — €yl
as well as the second extrapolation errors eF = [32ef, — eF |/31, eLF =

, 2 ,

|32€§% —eb |/31 and eEF = ‘3265% —eE /31

Now, let us examine the numerical data In Table 1.4. we have numerically

eln‘n:2m+1 ~ 8, €2n|n:2m+1 ~ 8 and eC’n|n:2""+1 ~8 (m =3, 78)
eCn|n:2m

61n|n:2"”

€an | n=2m

to indicate (4.1) perfectly, which imply that the first extrapolation is very ef-
fective. However, when p = 6, from (3.1d), w = min(7/2,14). Based on (4.1),

FE _EFE

there only exists the first extrapolation. For Table 1.4, although ey, e5,

EE
€Cn

these can largely be improved.

Table 1.5. Compute results using ¢q

and
are improved, the effectiveness is not remarkably. If we us ¢, (t) (p > 10),

y1\en\n 23 27 2° 26 27 28 29
1+2%10=2 | 7.917E-4 | *1.148E-4 | 1.419E-5 1.774E-6 | 2.216E-7 | 2.771E-8 | 3.463E-9
1+2%10=3 | 4.317E-3 | 3.197E-4 | *3.302E-5 | 4.124E-6 | 5.154E-7 | 6.442E-8 | 8.052E-9
1+2%10~*% | 4.243E-3 | 2.457E-4 | 4.689E-5 | *5.775E-6 | 7.217E-7 | 9.020E-8 | 1.127E-8
1+2*10~° | 1.560E-3 | 7.555E-4 | 5.690E-5 | *6.350E-6 | 7.938E-7 | 9.921E-8 | 1.240E-8
1+2%107% | 5.362E-3 | 1.930E-4 | 3.171E-5 | 6.247TE-6 | *7.734E-7 | 9.667E-8 | 1.208E-8
1+2*%10~7 | 7.066E-3 | 1.492E-4 | 8.266E-5 | 6.028E-6 | *7.068E-7 | 8.837E-8 | 1.104E-8
1+2¥10-% | 6.913E-3 | 4.367E-4 | 5.651E-5 | 3.181E-6 | 6.263E-7 | *7.804E-8 | 9.754E-9
1+2%107Y | 6.764E-3 | 6.116E-4 | 1.604E-5 | 7.841E-6 | 5.515E-7 | *6.765E-8 | 8.454E-9
1+2*¥10-10 | 6.706E-3 | 5.991E-4 | 3.454E-5 | 3.763E-6 | 3.114E-7 | 5.796E-8 | *7.250E-9
1+2%10~11 | 6.687E-3 | 5.846E-4 | 5.330E-5 1.703E-6 | 6.970E-7 | 4.872E-8 | *6.172E-9
1+2%¥10712 | 6.681E-3 | 5.789E-4 | 5.254E-5 | 2.640E-6 | 1.128E-7 | 3.131E-8 | 5.168E-9
1+2%¥10~13 | 6.679E-3 | 5.770E-4 | 5.114E-5 | 4.660E-6 | 1.723E-7 | 5.951E-8 | 4.038E-9
1+2*¥10-1 | 6.678E-3 | 5.763E-4 | 5.058E-5 | 4.644E-6 | 1.906E-7 | 1.803E-8 | 2.147E-9

Below we calculate the values of u(y1,ys) at the neighbor of singular point
(1,0). From (6.2), for |y1| > 1 and yo = 0, exact solution u(yy,ys2) is u(y,0)

1

log

UHVYETL 1) Table 1.5, we list the errors e, = |u(y1,0) — u"(y1,0)]

2

(n=2%4=3,..9). From Table 1.5, as y; — 1, the approximate accuracy is
still O(h3), which does not happen.

Next, we compute the derivable values

Au(y1,y2)
o

at the neighbor of singular

Y1
point (1,0). From (6.2), at points y = (y1,0) (|y1] > 1), we derive

6u(y1, 0)
oy
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1 /1 1 11 1
wlog2 [y —wi\/1-a7 = log2 /7 1
Table 1.6. Compute results using ¢
n | e\y | 141071 1+1072 1+103 1+10~4 1+107°
25 | e5 1.950E-6 | 8.245E-5 | 1.953E-4 | 1.577E-4 | 4.685E-3
20 | e 2.438E-7 | 1.029E-5 | 2.535E-5 | 3.220E-5 | 1.002E-5
e 4.979E-11 | 1.258E-8 | 1.071E-6 | 5.933E-5 | 6.578E-4
27 [ er 3.046E-8 | 1.286E-6 | 3.167TE-6 | 4.030E-6 | 1.096E-6
e? 2.397E-11 | 6.086E-10 | 1.691E-9 | 4.814E-9 | 1.792E-7
28 | eg 3.806E-9 | 1.607E-7 | 3.958E-7 | 5.036E-7 | 1.372E-7
el 1.004E-12 | 2.164E-11 | 6.886E-11 | 1.414E-10 | 1.523E-10
29 | eg 4.758E-10 | 2.009E-8 4.948E-8 6.294E-8 1.716E-8
el 3.484E-14 | 7.150E-13 | 2.391E-12 | 6.265E-12 | 2.085E-11
Table 1.7. Compute results using ¢q
n | e\y | 1+10°° 1+10°7 1+10°% [ 1+107% [ 1410710
25 | e 3.677E-2 | 1.265E-1 | 1.381E-1 | 7.215E-1 | 1.103E4-0
26 [ e 5.760E-4 | 2.827E-3 | 2.688E-2 | 9.648E-2 | 1.790E-1
er 5.912E-3 | 1.485E-2 | 5.046E-2 | 2.133E-1 | 3.622E-1
27 [ er 2.625E-5 | 1.052E-4 | 5.247E-4 | 6.163E-4 | 1.597E-2
et 5.229E-5 | 2.835E-4 | 4.440E-3 | 1.307E-2 | 4.382E-2
28 | eg 3.276E-6 | 1.374E-5 | 4.474E-5 | 1.278E-4 | 3.544E-4
er 6.062E-9 | 6.718E-7 | 2.382E-5 | 5.807E-5 | 2.686E-3
29 | eg 4.095E-7 | 1.719E-6 | 5.600E-6 | 1.655E-5 | 4.687E-5
e 8.834E-11 | 7.462E-10 | 8.965E-9 | 6.505E-7 | 2.936E-6
In Table 1.6 and 1.7, we list the errors e, = |3Uéz;11,0) _ 61/:9(51170)‘/'0“%11,

(n=2" m=5,6,7,8,9) and the extrapolation errors eZ = [8en —e,|/T at the

neighbor of singular point (1,0).

Example 2!

28]

right-angled wedge:

I'={(z1,0): 0 <27 <1} U{(0,22) : 0 < zp < 1}.

The integral equation is chosen as

—/ In|y — z|v(z)ds, =1, for (y1,y2) € T.
r

We compute the numerical solution of

u(y)

—/ In |y — z|v(z)ds,
r

at (0.5,0.5), whose true value 4(0.5,0.5) takes 0.621455343.
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Let I" be an open contour of length 2, in the form of a




From [28], although the exact solution v(x) is expected to have a O(|z —
aco\fé) singularity at the right-angled corner, the dominant singularities in v(x)
oceur at the two ends, with O(|z — x| ~2). Based on [15,16], using ¢4 (t) in the
periodical transformation (5.3), we obtain the numerical results at @ = (0.5,0.5)
by MQMs and list Cond. and Cond-eff in Tables 3.1. Let n,, (m = 1,2) be
the number of uniform partition on [0, 1] corresponding to the mth edge T,
of I'. Based on (5.9), we can obtain the splitting extrapilation errors e”(Q) =

lup (@) — u(Q)|, where

8 7
up(Q) = ;[Z upen (@) = (d = Jupo (Q)], d =2,
m=1

is the splitting extrapilation values. The errors |u"(Q) —u(Q)| and the splitting
extrapilation errors e”(Q) are also listed in Table 2.1, where (n1,n2) = (8,8)
and (16,16).

Table 2.1. The errors, Cond. and Cond_eff for (6.3).

(n1,m2) | [u® —u] | [\] [An] | Cond. | Cond-eff
(4,4) 4.413E-2 | 0.104 | 4.287 | 40.865 | 12.042
(8,4) 2.166E-2 | 0.113 | 4.147 | 36.420 | 11.979
(4,8) 2.166E-2 | 0.113 | 4.147 | 36.420 | 12.049
eF 7.229E-3

(8,8) 1.738E-3 | 0.055 | 4.374 | 78.474 | 22.395
(16,8) | 9.452E-4 | 0.056 | 4.312 | 76.007 | 23.820
(8,16) | 9.452E-4 | 0.056 | 4.312 | 76.007 | 23.856
eP 7.495E-5

(16,16) | 1.383E-4 | 0.028 | 4.378 | 154.828 | 44.046
(32,16) | 7.805E-5 | 0.028 | 4.357 | 153.680 | 47.609
(16,32) | 7.805E-5 | 0.028 | 4.357 | 153.680 | 47.618
eP 5.184E-7

(32,32) | 1.725E-5 | 0.014 | 4.375 | 308.348 | 87.754
(64,32) | 9.703E-6 | 0.014 | 4.369 | 308.234 | 95.208
(32,64) | 9.703E-6 | 0.014 | 4.369 | 308.234 | 95.210
eP 1.350E-9

From Table 2.1 we have

|Uh - U|(4,4) \Uh - U|(16,16)

h_
. 12 =68 5 56 ana
[u” — uls,8)

— 25.39, _
[u" — ul(16,16) [u — ul(32,32)

=8.01, (6.4)

Hence, the SEMs can provide more accurate solutions. Note that from Table 2.1
2
with the total number n = Z Ny = 32 and 64, the error of SEMs is 5.184F-7

m=1

and 1.350F — 9, respectively. In contrast, when n = 256 the u" = 0.62125 is
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given in [28] by Galerkin methods, where the approximating space S" is the
piecewise constant space. This fact displays the efficiency of MQMs and SEMs.

Since all corners of T are right-angled, it follows from results that in [27,28]
v(zx) is expected to have singularities of the form |z — z¢|~'/3 at the corners
in the exterior. By Galerkin methods, the errors are ||[v} — v1||?> = O(h*/3)
and |uf — u1|?> = O(h*/3). However, for the case in which the point z lies in
the interior, v(z) is much less singular, that is, the singularities are only of the
form |z — z0|. By Galerkin methods, the errors are |[v} — v3||> = O(h?®) and
|ul — ug| = O(h'3/9).

To close this paper, let us make a few concluding remarks.

1. The above numerical results show that the MQMSs not only possess high
accuracy, but also h®—Richaedson extrapolation or SEM and a posteriori error
estimate are very effective. Since the discrete matrix of BIE is full, by using SEM
the larger the scale of problems are, the more effective the methods are. These
results further verify that it is reasonable to construct the MQMs in the paper
and it is correct to give the convergence theory. Especially, the results in tables
display that the approximate accuracies are very high. It further shows that
the accuracy order can be largely enhanced by h?—Richaedson extrapolation or
SEM.

2. To the MQM there exist the following advantages: (1) each elements
of discrete matrixes calculated are very simple and straightforward, not need
calculate any singular integrals; (2) it is a high accuracy algorithm O(h?). How-
ever, the theoretic study of the MQM is more difficult than that of Galerkin and
collocation methods, because its theory is no longer within the framework of the
projection theory. In the present paper we only discuss Dirichlet’s problems,
and to mixed boundary problems or Neumann’s problems we can also establish
the corresponding to algorithms by using these results.

3. This paper explores the traditional stability analysis, the traditional
Cond. = O(h™!). The small bounds of condition number are significant to
stability of numerical the first kind boundary integral equations for Laplace’s
equations. This paper is the first time to explore stability analysis for the open
contour, and to derive (5.2), which grants the MQMs an excellent stability.

4. Numerical experiments are carried out for the arbitrary boundary I' with
Cr # 1 by MQM and SEM, and the computed results coincide with the new
stability analysis perfectly.

5. The extrapolation and SEM techniques are applied to the first kind
boundary integral equations, to improve the solution accuracy.
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