Formulation of the MFS for the two-dimensional Laplace equation with an added constant and constraint
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Abstract

[bookmark: OLE_LINK1]Motivated by the incompleteness of single-layer potential approach for the interior problem with a degenerate-scale domain and the exterior problem with bounded potential at infinity, we revisit the method of fundamental solutions (MFS). Although the MFS is an easy method to implement, it is not complete for solving not only the interior 2D problem in case of a degenerate scale but also the exterior problem with bounded potential at infinity for any scale. Following Fichera’s idea for the boundary integral equation, we add a free constant and an extra constraint to the traditional MFS. The reason why the free constant and extra constraint are both required is clearly explained by using the degenerate kernel for the closed-form fundamental solution. Since the range of the single-layer integral operator lacks the constant term in the case of a degenerate scale for a two dimensional problem, we add a constant to provide a complete base. Due to the rank deficiency of the influence matrix in the case of a degenerate scale, we can promote the rank by simultaneously introducing a constant term and adding an extra constraint to enrich the MFS. For an exterior problem, the fundamental solution does not contain a constant field in the degenerate kernel expression. To satisfy the bounded potential at infinity, the sum of all source strengths must be zero. The formulation of the enriched MFS can solve not only the degenerate-scale problem for the interior problem but also the exterior problem with bounded potential at infinity. Finally, three examples, a circular domain, an infinite domain with two circular holes and an eccentric annulus were demonstrated to see the validity of the enriched MFS.
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1.  Introduction 
The method of fundamental solutions (MFS) is a popular method because it is meshless and easy to implement. As a result, the MFS has been applied to many areas such as potential problems [1], acoustics [2], elasticity [3] and biharmonic problems [4-6]. The basic idea of the MFS is to distribute sources outside the domain of interest and the field potential is approximated by a linear combination of fundamental solutions. From another point of view, the MFS can be seen as one kind of discretization of the indirect boundary element method (BEM) by using the concentrated source to substitute the boundary density distribution. Therefore, some rank-deficiency problems such as degenerate scale, spurious eigenvalue and fictitious frequency appearing in the BEM may be also inherent in the MFS since the formulation of the MFS as well as the indirect BEM [7] is not necessary and sufficient. Chen et al. [8] used the MFS to solve the problems of multiply-connected membranes and they found that the spurious eigenvalues exist. Numerical experiments show that spurious eigensolution depends on the location of the inner boundary where the sources are distributed. Later, Chen [9] applied the MFS to solve radiation and scattering problems of exterior acoustics. Numerical results show that there are irregular frequencies when the MFS is used. However, these irregular frequencies do not exist in physics and they are called the fictitious frequencies. Whether a degenerate scale appears in the MFS or not, there are few papers on this topic. Following the experience of the BEM, we may wonder whether the degenerate scale may exist or not when the MFS is employed to solve the 2D Laplace problem. To enrich a formulation of the MFS to overcome the degenerate scale problem is our main goal.
It is well known that a Fredholm integral equation of the first kind is often used to solve potential problems. However, as the scale of the domain size dilates or shrinks to a specific size, it causes failure in the BEM implementation [10] and may yield unacceptable results. This specific size is termed “degenerate scale”. For this degenerate scale, there are various terminologies such as critical value [11, 12], transfinite diameter [13], Gamma contour [14] and the unit logarithmic capacity [15]. Chen et al. [16] used complex variables to derive the degenerate scale of an elliptical geometry for the elasticity problem and found two degenerate scales. Later, not only circular boundary but also elliptical, square and triangular boundaries are considered for the 2D Laplace problems. They also found the degenerate scales when the BEM is used. Besides, they provided several remedy approaches to improve this drawback of the BEM. Recently, Chen and his coworkers [17, 18] not only used the null-field boundary integral equation in conjunction with the degenerate kernel but also employed the unit logarithmic capacity in conjunction with complex variables to analytically study the degenerate scale of the elliptical boundary. It is known that a degenerate scale is inherent in the BEM for solving the 2D Laplace problem subject to the Dirichelet boundary condition. In order to overcome this pitfall, Chen et al. [19] introduced Fichera’s concept [20] to the indirect BEM. It can not only overcome the ill-posed problem caused from the degenerate scale, but also can solve the exterior problem with bounded potential at infinity. Following the Fichera’s idea, they added a constant term and an extra constraint to deal with the rank-deficiency problem. Based on this successful experience, we introduce this idea to improve the MFS.
Regarding the traditional MFS, it is possible to obtain an inaccurate solution. As a result, many investigators proposed to enrich their formulation. Alves and Leitao [21] introduced the enriched MFS to simulate a crack singularity. Saavedra and Power [22, 23] have added a constant term in their formula and stated that “usually it is necessary to add a constant term in particular in two dimensions, where it is required for completeness purposes”. Although the inclusion of the constant in the MFS is sometimes recommended, it is rarely used in practice as the degenerate cases it "cures" occur rather rarely. The existence of this critical scale still needs further investigation. In the literature, several researchers have discussed the inclusion of the constant [17, 19, 24, 25]. In order to avoid the trouble of choosing a fictitious boundary, Chen et al. [26] developed the singular boundary method (SBM). They assumed a test example to calculate the source weighting, and then used this source weighting to determine the value of diagonal term where the source and field points can coincide. However, for certain case, the SBM yields an inaccurate approximation. As a result, they provided an improved formulation of adding a constant term and a constraint [27, 28]. They called this constraint “moment condition”. However, the role of the constant and the constraint was not discussed in detail in their papers. Following Fichera’s idea, the enriched formulation is useful to solve not only the interior problem, but also the exterior case. Although they [26-30] have successfully solved the problem, they didn’t deeply examine the role of the constant term and the constraint. Besides, they also did not discover that the problematic case they encountered is that their sources are distributed on a degenerate scale. In this article, we would like to provide an enriched MFS and explain why the constant term and constraint are required to ensure a unique solution for the degenerate scale. Besides, the role in exterior problems is also examined.
We examine the incompleteness of the MFS for interior problems containing a degenerate scale and exterior problems with bounded potential at infinity. Following Fichera’s idea for the boundary integral equation (BIE), we add a free constant and an extra constraint to enrich the MFS formulation. The enriched MFS can be used not only for the interior 2D problem in the case of a degenerate scale but also the exterior problem with bounded potential at infinity for any scale. The extra constraint, the sum of all source strengths to be zero, is used to make the potential at infinity bounded as well as suppressing the coefficient of indeterminacy to be zero. However, the constant term is added to compensate for the range deficiency by a constant field in case of a degenerate scale. Besides, it can also be used to capture a bounded potential at infinity. Finally, three examples, a circular domain, an infinite domain with two circular holes and an eccentric annulus were presented to demonstrate the validity of the enriched MFS. Besides, a constant potential test in the MFS is designed to verify the range deficiency instead of the patch test of the constant strain in the finite element method.

2.  Formulation 


In this section, the MFS is used to solve interior and exterior boundary value problems for the Laplace equation. A domain  is given, whose boundary  is simple and closed. The governing equation and boundary condition are shown below:
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	(2)


The fundamental solution of the Laplace equation is
	
.
	(3)



As an alternative to the direct BEM, the indirect BEM solution of interior problem is expressed in terms of single-layer potential with unknown boundary density of  as given below:
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Fichera [31] proposed the enriched boundary integral formulation as shown below:
	

	(6)

	

	(7)



where  is the fictitious boundary, and added a constraint equation as shown below:
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where  and  are the unknown boundary density and an unknown constant, respectively. For the interior BVP, it is reduced to solve the simultaneous equations (7) and (8). For simplicity, to understand the degenerate scale, a circular domain with a radius  is given for demonstration as shown in Fig. 1. The radius of the fictitious boundary is , where  for the interior problem,  for the exterior problem. By setting the field point  and the source point , the fundamental solution using polar coordinates can be expressed by using the following degenerate kernel, 
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The unknown boundary density  and the given boundary condition  can be expanded by using Fourier series along a circular boundary giving
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and
	
,
	(11)






where  and  are unknown coefficients, and  and  are determined from the Dirichlet boundary condition. Equation (8) yields
	
.
	(12)



From Eq. (12), we can determine the constant term . By substituting the degenerate kernel and Eq. (11) into Eq. (7), we have
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where  and . Therefore, all the unknown coefficients are uniquely determined as follows:
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It is found that  is the constant term of the Dirichlet boundary condition. If there is no constraint and constant  in Eq. (6), Eq. (5) alone yields a non-unique solution  from   due to  if . 
Since the MFS can be seen as a discrete version of the indirect BEM, we can revisit the MFS by using the degenerate kernel. In the enriched MFS formulation, we have
	
,
	(15)







where  is the number of source points and  is the strength of the ith source, . By expanding the closed-form fundamental solution, , into the degenerate kernel in Eq. (15) for , we have
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	After rearranging the term, we have
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By comparing Eq. (11) with Eq. (17), it is found that
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when the source distribution is on  (). Equation (18) becomes
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According to the Fredholm alternative theorem,  is the case of infinite solutions, while  is the case of no solution. Whatever  is, it indicates that Eq. (15) is neither sufficient nor necessary to ensure a unique solution. Equation (19) shows that we cannot determine the term . Following the mapping relationship between the unknown coefficient of the Trefftz method and the MFS, we similarly have
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The constraint of the indirect BEM, , could be transformed to the discrete form in the MFS for any scale as  By forcing  to be zero in a similar way of the indirect BIE of Eq. (18), the constant field is lost in Eq. (17). The outcome of not including the constant term leads to no solution if  in the Dirichlet boundary condition. The constraint  and the addition of a constant field, c, are both required to ensure a unique solution. 

Similarly, the solution of the indirect BEM for the exterior problem is presented in Eq. (4) with the degenerate kernel  as shown below:
	

	(21)






where . The term  is not a constant but is a function of  since . In other words, the representation is range deficient for a constant term to the exterior problem of any scale. It indicates that adding a free constant is necessary. We rewrite Eq. (21) by adding a constant c,
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When , the representation of the solution reveals an unbounded potential due to the fact that  as . Since the potential at infinity is bounded, the constraint of Eq. (12) is needed. In case of  we cannot determine  for matching the boundary condition if  is the location to match the boundary condition. However, the bounded potential at infinity enforces  to be zero and we need to add a free constant in the solution representation. The constraint  is equivalent to 
	

	(23)


To extend to a general problem instead of the circular case, Han and Wu [32] also proved that a bounded potential at infinity yields the following constraint:
	

	(24)


Physically speaking, the distance between the source on the complementary domain and the observer at infinity are almost the same as given in Eq. (24). If the resultant source is not zero, this yields an unbounded potential at infinity. Therefore, the enforced zero resultant results in bounded potential at infinity.
The MFS approximation for the solution can be represented as
	

	(25)

	
By expanding the closed-form fundamental solution into the degenerate kernel, , we have

	
.
	(26)


After comparing with Eq. (9) and Eq. (25), we have
	

	(27)




If is not zero, the potential at infinity behaves like  as shown in Eq. (27). The discrete type of the corresponding constraint of Eq. (8) is
	

	(28)


After combining Eq. (27) with Eq. (28), the lacking of a constant field in the right hand side of Eq. (26) appears for the exterior problem. Therefore, adding a free constant in Eq. (26) is required. Following the work of Chen et al. [33], the mapping relationship of unknown coefficients between the indirect BEM and the MFS for the exterior problem is:
	

	(29)




It is found that the constraint for the MFS is equivalent to  for the indirect BEM.
The enriched MFS expression in conjunction with a free constant and the constraint is summarized below:
	

	(30)


To sum up, the enriched MFS can handle both the interior and exterior problems at the same time. It also provides the sufficient and necessary equations for the unique solution for the interior and exterior problems.

3.  Results and discussions 
In this section, three examples, a circular case, an infinite plane problem containing two circular holes and an eccentric annulus were designed to verify the validity of the enriched MFS. The roles of the free constant and the extra constraint in the enriched MFS are also examined.

Case 1: Circular case - test of constant potential
The benchmark example for the enriched MFS is the Laplace problem for a circular domain subject to constant Dirichlet data as shown in Fig. 1. The analytical solution of the boundary value problem is 
	

	(31)




By distributing the sources along  (the radius of the circle is 0.5), Figure 2(a) shows the results of the traditional MFS. After comparing with the analytical solution, the traditional MFS yields an inaccurate solution due to the degenerate scale for  in the fictitious boundary of the source distribution. The traditional MFS fails for the specific source distribution on the degenerate scale. The proof is given in the previous section. The reason why it fails is that the solution representation by using the MFS with a special source distribution (degenerate scale) is range deficient by a constant field. We can add a free constant in the MFS formulation. Since one more unknown constant is introduced which makes the number of unknowns larger than the number of equations by one, we can numerically overcome this problem by adding one more collocation point to match the boundary condition instead of an extra constraint. However, offset of the angle for the 51 collocation points and 50 source points appears as shown in Fig. 2(b). The result of the traditional MFS containing a constant and offset collocation is illustrated in Fig. 2(c). To avoid this inconsistency, a more logical and natural approach with a theoretical base is to use one constraint of the zero sum of all source strengths. By adding a constant and an effective constraint, the enriched MFS recovers the accuracy of the MFS. Figure 2(d) shows acceptable results in comparison with the exact solution.

Case 2: An infinite problem containing two circular cavities
The sketch of problem and boundary condition are shown in Fig. 3. The analytical solution is obtained by way of bipolar coordinates as follows:
	
 
	(32)





[bookmark: OLE_LINK2][bookmark: OLE_LINK3]Nine source distributions are illustrated in Fig. 5(a). Three columns denote various outer distributions, locating sources including, passing and excluding the left focus. Three rows show various inner distributions, locating sources including, passing and excluding the right focus. To sum up, if both a free constant and the constraint are not considered, it yields inaccurate results as shown in Fig. 4(a). By only adding a constant without using the constraint, it yields inaccurate results as shown in Fig. 4(b). The enriched MFS shows the acceptable result in agreement of the analytical solution as shown in Fig. 4(c). It is found that all types of source distribution (Types A, B, C,…., I) yield a constant term, , near the exact value 1 in Fig. 5(b). It indicates that the content of constant one in the exact solution is fully represented by the base of a free constant  only. Figure 6 shows that all the singularity strengths are found to be zero except two nonzero strengths of amplitude 2 and -2 at the left and right foci, respectively. This matches the exact solution very well from the view point of  bipolar coordinates. The reason is that the fundamental solution () contains no constant part in the exterior expression of the degenerate kernel as shown in Eq. (9). By adding the constraint, the solution of the MFS yields a bounded potential at infinity.

Case 3: An eccentric annulus

    An eccentric annulus of the Laplace problem was solved by using the MFS [33, 34]. However, they did not employ the enriched idea. Although they solve the problem, their case does not contain the degenerate scale, . Here we design a degenerate scale case of source distribution to show the power of an addition constant and an extra constraint.
    For a doubly-connected domain, an eccentric annulus is considered as shown in Fig. 7 [33, 34]. In this case, the analytical solution is shown below:
	
 
	(33)


Nine kinds of source distributions are shown in Fig. 8. Three columns denote various outer distributions, locating sources including, passing and excluding the left focus. Three rows show various inner distributions, locating sources including, passing and excluding the right focus.








Figure 8(a) shows unacceptable results since the source distribution is on the degenerate scale. On the other hand, it shows that the result of the enriched MFS agrees well with the analytical solution in Fig. 8(b). Figure 9 illustrates that three groups of the value  are found for nine cases of source distribution, ≒1.50 for Type A, D, G, ≒1.00 for Types B, E, H, ≒0.40 for Types C, F, I. If the outer source distribution passes the left focus, the value  is found to approach 1. However, the value  is found to be smaller and larger than one for including and excluding the left focus, respectively. It is found that the value  is not changed in the same column. This can be explained that singularities inside the circle could not contribute the constant field according to the exterior form of the degenerate kernel in Eq. (21). Therefore, different row by changing the source distribution inside the circle could not contribute to the constant. Three different columns of outer sources contribute the constant field by -0.5, 0 and 0.6, for the cases of including, passing and excluding the left focus, respectively. For the case of passing focus, the constant field is fully contributed by the free constant c. Figure 10 shows that all the singularity strengths are found to be zero except two nonzero strengths of amplitude -2.88539 and 2.88539 at the left and right foci, respectively. It also indicates that the value of the constant term is fully contributed by adding a constant, , while the source distribution is along two foci. Figure 11 shows that nine source distributions (Types A-I) can yield acceptable results.
Although we consider the MFS by adding a free constant and a constraint, this idea in Fichera’s approach of the indirect BEM can be found [19]. Table 1 shows the role of the constant and the constraint for interior and exterior problems. The accuracy of the solution of the single-layer representation is improved in the three cases by adding a constant and an extra constraint. The enriched MFS is not only free of the degenerate scale of source distribution for the interior problem but also free of the unbounded potential at infinity for the exterior problem.

4.  Conclusions 


In this paper, we have demonstrated that the traditional MFS may fail for the degenerate scale of the source distribution for the interior problem and the exterior problem with bounded potential at infinity. To enrich the MFS, a free constant and a corresponding constraint were required. Roles of free constant and the constraint were also examined. For the exterior problem, the fundamental solution () does not contain the constant field in the exterior expression of degenerate kernel. Therefore, a free constant should be added. To have a bounded potential at infinity, the constraint is required. In addition, a bounded potential at infinity yields the constraint that the sum of boundary densities or source strengths should be zero as mentioned in Han’s book [32]. Regarding the interior problem, the extra constraint of the sum of source strengths to be zero is required since it can not be determined due to multiplication to zero of  in case of the source distribution on the degenerate scale. Suppression of the coefficient of indeterminacy to be zero yields the rank deficiency by a constant field. Then, we need to add a free constant. Three examples, a circular case, an infinite domain containing two circular holes and an eccentric annulus were illustrated to see the validity of the enriched MFS.
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Table Captions 
Table 1  Why a constant and a constraint are both required in the enriched MFS ?

Figure captions

Fig. 1   Problem sketch of a circular domain. ()

Fig. 2(a) Unacceptable contour plot of the traditional MFS () without the enriched formulation.
Fig. 2(b) Offset of the angle for the collocation point and the source point in case 1.

Fig. 2(c) Contour plot of the traditional MFS containing a constant by using sources with a offset ().


Fig. 2(d) Contour plot of the enriched MFS ( and ).



Fig. 3   Problem sketch of an infinite domain containing two circular holes. (,)

Fig. 4(a) Unacceptable contour plot of the traditional MFS () and the exact solution. (The black bold circle denotes the real boundary)

Fig. 4(b) Unacceptable contour plot of the traditional MFS containing a constant () and the exact solution. (The black bold circle denotes the real boundary)


Fig. 4(c) Contour plot of the enriched MFS ( and ) and the exact solution. (The black bold circle denotes the real boundary)

Fig. 5(a) Sketch of the source distribution Types (A~I) in the infinite domain containing two circular holes and the value of . (Real boundaries are plotted by the solid curve, the dotted curve shows the source distribution and the red cross denotes the source distribution along the focus)
Fig. 5(b) Contour plot of the solution by using the enriched MFS of the source distribution Types (A~I) in the domain problem containing two circular holes. (The light blue circle denotes the real boundary)
Fig. 6   Bar chart of the unknown boundary density for the source points in case 2. (Source distribution is shown at the bottom right corner, and the red point denotes the focus)



Fig. 7   Problem sketch of an eccentric annulus. (,)


Fig. 8(a) Contour plot of the traditional MFS () and the exact solution, where sources are distributed on a degenerate scale, . (The black bold circle denotes the real boundary)



Fig. 8(b) Contour plot of the enriched MFS ( and ) and the exact solution, where sources are distributed on a degenerate scale, . (The black bold circle denotes the real boundary)
Fig. 9   Sketch of the nine kinds of source distribution in the an eccentric annulus problem. (Real boundaries are plotted by the solid curve, the dotted curve shows the source distribution and the red cross denotes the source distribution along the focus)
Fig. 10  Bar chart of the unknown boundary density for the source points in case 3. (Source distribution is shown at the bottom right corner, and the red point denotes the focus)
Fig. 11  Contour plot of the solution by using the enriched MFS of the source distribution Types (A~I) in the eccentric annulus problem. (The light blue circle denotes the real boundary)
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	Sufficient and necessary formulation of the MFS         (An enriched MFS)
	


	
	Interior Domain
	Exterior Domain

	

	Range deficiency by a constant field, c, in case of degenerate scale
	No constant field in the degenerate (exterior) kernel for the fundamental solution for any scale

	

	Rank promotion in case of degenerate scale
	Satisfying the bounded condition at infinity for any scale


Remark: If the formulation is not appropriate for the solution space, it is impossible to approach the exact solution even through using many source points. Conversely, if the formulation is complete for representing the solution space, only a fewer source points can yield the acceptable solution.
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Fig. 1 Problem sketch of a circular domain.
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Fig. 2(a) Unacceptable contour plot of the traditional MFS () without the enriched formulation.
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Fig. 2(b) Offset of the angle for the collocation point and the source point in case 1.
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Fig. 2(c) Contour plot of the traditional MFS containing a constant by using sources with a offset ().
[image: ]


Fig. 2(d) Contour plot of the enriched MFS ( and ).
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Fig. 3 Problem sketch of an infinite domain containing two circular holes.


(, )



















Exact solution: ———    Numerical solution: – – – – –
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Fig. 4(a) Unacceptable contour plot of the traditional MFS () and the exact solution. (The black bold circle denotes the real boundary)
















Exact solution: ———    Numerical solution: – – – – –
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Fig. 4(b) Unacceptable contour plot of the traditional MFS containing a constant () and the exact solution. (The black bold circle denotes the real boundary)














Exact solution: ———    Numerical solution: – – – – –
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Fig. 4(c) Contour plot of the enriched MFS ( and ) and the exact solution. (The black bold circle denotes the real boundary)
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Fig. 5(a) Sketch of the source distribution Types (A~I) in the infinite domain containing two circular holes and the value of . (Real boundaries are plotted by the solid curve, the dotted curve shows the source distribution and the red cross denotes the source distribution along the focus)
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Fig. 5(b) Contour plot of the solution by using the enriched MFS of the source distribution Types (A~I) in the domain problem containing two circular holes. (The light blue circle denotes the real boundary)
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Fig. 6 Bar chart of the unknown boundary density for the source points in case 2. (Source distribution is shown at the bottom right corner, and the red point denotes the focus)
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Fig. 7 Problem sketch of an eccentric annulus.
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Exact solution: ———    Numerical solution: – – – – –
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Fig. 8(a) Contour plot of the traditional MFS () and the exact solution, where sources are distributed on a degenerate scale, . (The black bold circle denotes the real boundary)








Exact solution: ———    Numerical solution: – – – – –
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Fig. 8(b) Contour plot of the enriched MFS ( and ) and the exact solution, where sources are distributed on a degenerate scale, . (The black bold circle denotes the real boundary)
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	Type G (c=0.40086)


	Type H (c=0.99997)


	Type I (c=1.49581)





Fig. 9 Sketch of the nine kinds of source distribution in an eccentric annulus problem. (Real boundaries are plotted by the solid curve, the dotted curve shows the source distribution and the red cross denotes the source distribution along the focus)
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Fig. 10 Bar chart of the unknown boundary density for the source points in case 3. (Source distribution is shown at the bottom right corner, and the red point denotes the focus)
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	Type I (c=1.49581)



Fig. 11 Contour plot of the solution by using the enriched MFS of the source distribution Types (A~I) in the eccentric annulus problem. (The light blue circle denotes the real boundary)
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