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Abstract

In this paper, a new meshless method for solving the eigenfrequencies of plates using the radia basis
function (RBF) is proposed. By employing the imaginary-part fundamental solution as the RBF, the
coefficients of influence matrices are easily determined. True eigen solutions in conjunction with spurious
eigen solution are obtained for plate vibration. It is found that spurious eigen solution for the
samply-supported plate using the present method is the same as the true eigensolution of the clamped case
in the numerical experiments. To verify this finding, the circulant is adopted to analytically derive the true
and spurious eigenequation in the discrete system of a drcular plate. In order to obtain the eigenvalues
and boundary modes at the same time, the singular value decomposition (SVD) technique is utilized. Two
examples are demonstrated analytically and numericaly to see the validity of the present method.
Keywords. Meshless method; Radia basis function; Plate vibration; Clamped; Simply-supported

Introduction

Mesh generation of a complicated geometry is always time consuming in the stage of model creation
for engineers in dealing with engineering problems by employing numerical methods, e.g., the finite
difference method (FDM), finite lement method (FEM) and boundary element method (BEM). In the
last decade, researchers have paid attention to the meshless method without employing the concept of
eement. Several meshless methods have adso been reported in the literature, for example, the
domain-based methods including the element-free Gaerkin method [1], the reproducing kernel method
[2], and boundary-based methods including the boundary node method [3], the meshless loca
Petrov-Galerkin approach [4], the local boundary integral equation method [5] and the RBF approach [6].

Integral equations and BEM have been utilized to solve the boundary vaue problems for along time.
Several approaches, e.g., the complex-valued BEM, the method of fundamental solution, the dual



THE 26th NATIONAL CONFERENCE ON THEORETICAL AND APPLIED MECHANICS
Hu-Wei, Taiwan, R. O. C., 20-21 December 2002

reciprocity method (DRM), the particular integral method [7], multiple reciprocity method (MRM), the
real-part BEM and imaginary-part BEM [8], have been developed for eigenproblems. To solve the
problem by using the complex-valued BEM, the influence coefficient matrix would be complex
arithematics [9]. Therefore, Tai and Shaw [10] employed only the real-part kernel to solve the eigenvalue
problems and to avoid the complex-valued computation in sacrifice of appearance of spurious eigenvalues.
To avoid the singular and hypersingular integrals, De Mey [11] used imaginary-part fundamental solution
to solve the eigenproblems and also encountered the problem of eigen solution. Kang et a. proposed the
NDIF (Non-dimensiona Dynamic Influence Function) method to solve eigenproblems of membranes
[12], acoustic cavities [13], and plates [14]. Later, Chen et a. commented that the NDIF method is a
specia case of imaginary-part BEM after lumping the distribution of density function for membrane
vibrations [15] and acoustics [16], and plate [17,18]. Nevertheless, spurious eigensolutions are inherent in
the imaginary-pat BEM, the real-pat BEM and the MRM. Numericaly speaking, the spurious
eigensolutions result from the rank deficiency of the influence coefficient matrix. Thisimplies the fewer
number of constraint equations making the solution space larger. Mathematically speaking, the spurious
eigensolutions for interior problems arise from the same source of ™ improper approximation of the null
space of operator”. Two sources of rank deficiency in the influence matrices can be classfied, one is
spurious solution due to incompleteness and the other is due to the nontrivia eigensolution.

In this paper, we will employ the imaginary-part fundamental solution as RBF to solve the plate
vibration problems. The main difference between the present formulation and the method of fundamental
solution is that we adopt only the imaginary-part fundamental solution instead of employing the
complex-valued singular kerndl. In solving the problem numericaly, elements are not required and only
boundary nodes are necessary. Both the boundary and source points are distributed on the boundary only.
The difference between the present method and the NDIF method will be emphasized in selecting the
interpolation bases. The occurrence of spurious eigenvaues will be discussed. For the case of circular
plate, the eigensolutions will be anaytically derived in the discrete system by using circulants. In addition,
the true eigenvalues and eigen modes for a circular plate will be derived exactly by using degenerate
kernel and Fourier series expansion. Two examples, circular plates subject to the clamped and
samply-supported boundary conditions, will be demondrated to see the validity of the present
formulation.

M eshless formulation using radial basis function of the imaginary-part fundamental

solution
The governing equation for a free flexural vibration of a uniform thin plate iswritten as follows:
NAw(x) =1 *w(x), xT W, @)
. : . _W?rh . . .
where w is the lateral displacement, | * = D A is the frequency parameter, W is the circular
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frequency, p is the surface dengity, D is the flexura rigidity expressed as D = % in terms of
-n

Y oung's modulus E, the Poissonratio v and the plate thickness h, and O is the domain of the thin plate.
The radid basis function is defined by
G(x,5) =] (ls- x|) 2
where x and s are the collocation and source points, respectivdy. The Euclidean norm | s- x| is
referred to as the radia distance between the collocation and source points. The two-point function
(j (|- x])) iscadled the RBF since it depends on the radia distance between x and s. By considering

the imaginary-part fundamental solution (W (s, X) = Im{ ~(HP (I r)+ HE (il r))}) [19] for the plate

vibration, the six kernels in the dual formulation are

W(s,x)=8|—12(JO(I r)+1,(r)), (€)
- ﬂW(S’X) - 1 - Jl(l I’)+ |1(I I’)
Q(S!X) - ﬂns _8T r yini’ (4)
_IW(s,x) _ 1 J(r)-1d0r) -
W, (s,X) = i, 8 p Yy, ni, ©)
0.(5.%) = TPW(s, X) :i(- 13, r)2- L1,(1r) yin yjﬁj +Jl(l r)- 1.(r) niﬁi), ©
ngIn, 8 r r
W, (s.%) = TPW(s, X) =i(| J,(l r)+2I I,(lr) yiﬁi yjﬁj Lo J,(Ir)+1.( r)ﬁiﬁi), @
In9in, 8l r r
o (6.4 = ﬂw;/.l(f >)<) 8( 1 3,( r33+l 15 r)yn y, n,ykﬁ +J (I r)r+| ,(r) an n
+JZ(I r)-l;lz(l r)yiniﬁjﬁj J,( r)+|2(l r knknn) ®

r re
inwhich r © |s- x| is the distance between the source and collocation points; n; is the ith component

of the outnormal vector at s, n_I is the ith component of the outnormal vector a x, J,and |, denote

the first kind of the nth order Bessel and modified Bessel functions, respectively, and Yy, ° |§ - X; |,
i= 1, 2, are the differences of the ith components of s and X, respectively. Based on the six kernels, the
displacement, dope and moment can be represented by

2N 2N R
W(x) = aW(s;, ) p(s;) +Q Qs . )a(s), xT W ©

j=1 j=

2N 2N R
q(x)=éwn<s,-,x)p(sj)+é Q,(s;.9a(s), xI W (20
M0 = & Wa(s, ) pCs, )+a Qu(s;.X)a(s), xT W (1)

j=1 i=
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where, Wm(sj,x):wm(sj,x)+%vvn(sj,x) and Qm<sj,x):Qm(sj,x)+':—Qn(s,-,x), p(s) and

q(s) are the generalized unknowns at s, 2N is the number of collocation points. The main difference
between the present formulation and the NDIF method proposed by Kang and Lee [14] is the choice of
RBF. The NDIF method chose W(s,X) = J (I r) and Q(s,x)=1,(I r). A comparison between the
Kang method and our approach is shown in Table 1. After collocating the point x on the boundary, the
boundary conditions of the clamped plate are

{0 =wl{p}+[Qlf{d, wx=0 (12

{=w.J{+[Q.}{a} a=0, (13)
where {p} and {q} are the vectors of undetermined coefficients. By assembling Egs.(12) and (13)
together, we have

1 pu
[sm]i "y ={o}, (14)
19
where
W Qu
[sm]= SN a (15)
n Qn Usn' 4N
the determinant of the matrix versus elgenvalue must become zero to obtain the nontrivia solution, i.e.,
det{Sv]=0. (16)

By plotting the determinant versus the frequency parameter, the curve drops a the postions of
eigenvalues. Similarly, the smply-supported case can be obtained.

Analytical study for theeigensolution of acircular plate using circulants in the discrete
system
For the circular plate, we can express x = (r ,f)and s=(R,q) interms of polar coordinate. The

W kernels can be expressed in terms of degenerate kernels as shown below:

:‘Il:WI @.f) =8|i2 A3 RILAT)+C)", (R, (r)]cos(m@-f)), R>r
W(s X) = 1 m=-¥

%WE(Q =gz g [Jn( ) (R + (D™, ()1, (I R)cos(m(g - ), R<r

where the superscripts “1 ” and “E " denote the interior (R > ?) and exterior domains (R < ?), repectively.
Since the rotation symmetry is preserved for a circular boundary, the six influence matrices in Egs.(9)-(11)
are denoted by [W], [T], [Wi], [Tn], [Win] and [T ;] of the circulants with the e ements,

Ky =K(r,q;;r.f,), (18

(17)

wherethe kerndl K canbe W, © , W, @, ,W,or O, f; and g; arethe angles of observation and

boundary points, respectively. By superimposing 2N lumped strength aong the boundary, we have the
influence matrices,
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K]=

where the elements of the first

é a, & a, N2 a2N-ll‘j|
e

éazN-l ay a aon-3 azN-zl]
SN BN B g Dy.3l
€ . : : . .U
e . . . . u
€a a & Ana & H

row can be obtained by
a.; = K(Sj’xi)'

(19)

(20)

The matrix [K] in Eq.(19) is found to be a circulant [20] since the rotational symmetry for the influence
coefficients is considered. By using the degenerate kernel and the orthogond property, the eigenvalue of
the matrices [W], [T], [Wh], [Tn], [Wm] @and [T ] can be respectively obtained as follows:

N
4] 2

l, =

[3,0r)3,(r)+CD (),

m =%[Jg(| D)) +ED A A,

n, =%[J/(| 300 +ED LA,

d, :%[J/(I £)d,(1 1)+

GO,

(21)
(22)
(23

(24)

K, :%[J/'G D300 +ED L)L )]+A’f\||—r:[3/(| D300 +EDLANDLA], (2

h, =%[JZ"(| )3, A+ A (r )]+%[J/(| ()3 )+ AL AL (29

where ¢/ =0,%1,£2,---,

Ou

04

p(AN - 4(N - 1),

0 1
— ) cos(— =)

2pN

2N 2N
4pN
cog( 2N )

P (4N - 4)(N). G

ooooooc

) s

p(4N - 2)(N - 1)

) cog( >N )

expressed by
d, 0 O 0 0
é
éO l, O 0 0
éo 0 I, 0 0
é. . .
Wl=Fs,FT=Fg: :
€0 0 O Iy O
e
eO 0O O 0 I (N-1)
80 0O O 0 0
where
g Y % 2 %N 1)
é P . 2P p (N -
§|- COS(i_N) Sn(i_N) Cos(m)
p . 4p -
F:vl_g. N AT T
2N & L : . : )
§ o B2, G BEN-D) o p N AN
e 2p(2N-1), . 2p(2N -1 p(4N - 2)(N - 1)
g N ) Sy o 2N

) sin|

p (4N - 2)(N), U
2N IGZN'ZN

5N ) oS

Smilarly, [T], [Wi], [T+], [Wi] and [T ] can be decomposed. Equation (15) can be reduced to

+(N-1), N. Since the marix [W] is a symmetric circulant, it can be

(27)

(29)
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éFS,FT FSFTU

[SVI ] = T Tu ’ (29)
ézswnF FSQnF AN 4N
Eq.(29) can be reformulated into
& Ooué S, uéF  ou'
[sm]=¢ QézN SQUé Qs (30)
€0 Faedw 90,060 Fu
Since F is orthogonal, the determinant of [SM]nwan iS
dEt[SVI]:So(Slsz"'S N—1)2SN’ (31)

where

s =g -mn <NDBAOLID- 10 A0)F @
A4 3,(0n)J,Ar)+ED A,
for the damped case. After using the differential property of Bessel function, Equation (32) can be
reduced to
[3, (L)) +1,3Ar)3u(r)]° _
()3, Ar)+¢ED, )1, (r)
According to Eq.(33), the eigensolution is found to match the exact solution well since the denominator is

0, (=0+L+2 - +(N-1,N, (39)

never zero. The true eigen equation is
I, r)+1,(r)d,.4(r)=0 (34
Similarly, the eigen equation of smply-supported plate can be obtained as follows:

Q010 #1000, )22l Al =0

(=0,£1,+2,---,2(N- 1, N, (35
It isinteresting to find that the eigensolution of the clamped case is embedded in the Eq.(35) for the
smply-supported case. After comparing with the exact solution, the present method results in spurious
eigensolution [J, (I r)l,,,(dr)+1,(r)J,,(r)] =0 a the same time when we obtain the true eigen

equation
|/,+1(| r) + ‘J/j+1(| r) — 2| r
Ldr)y 3(r) @-n)’

(36)

for the smply-supported case.
Derivation of interior modes for the circular plate usng degenerate kernel and Fourier
seriesin the continuous system
Derivation of the eigenequation
For the purpose of analytical study, we use the continuous system to obtain the eigenequation.
The unknowns densities p(s) and q(s), can be expanded into Fourier series by

B(s) = 2 + & (& cos(ng) + b, sin(nq)), sT B, @
0(8) = Co + & (¢, cos(ng) +d,sn(ng)), sT B, @
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where a,,, b, ¢, and d, are the undetermined Fourier coefficients. The field representations of Egs.(9)-(11)

arewritten as
W(X) = QWE(s, X) p(s)dB(s) + HQ" (s X)a(s)dB(s) (39)
a(x) = QW," (s, X) p(9)dB(s) + O)Q;, (s X)a(s)dB(s) (40)
m(x) = YW, (s,x) p(s)dB(s) + )Qx (s, X)q(9)dB(S) (42)

For the clamped case, we have

0= W (5% (a0 + & (a, cos(na) + b, sn( na)))r cg

+ " Q% (59 (co + & (¢, cos(ng) +d, sn(na))r da, X1 B, @
0= WE(,3) (3 + & (3, cosng) +b, s na)))r ci
+ 3 Q5(59 (co + & (¢, cos(ng) +d, Sn(na))r da, X1 B, )

By subgtituting the degenerate kernels and employing the orthogonality condition of the Fourier series,
the Fourier coefficients a,, by, ¢, and d,, satisfy

_ 13,03, )+ r)n3r)
IR S SR Ea S NI S TN R
_ 13,030+ An)ndr)

T3 )3 ) +EDM A )
From Eq. (43) we smilarly have

@, ADIAN+EDL, A0 +2@, 113,00+, A 01,01

n=012---, (44)

=0,12, -, (45)

C,=- a,,
Ig(Jn"(I )3, (1) +EDM, (A, ( Ir))+8?—|(Jn'(| D3, Q)+, @), (r)
n=0,12---, (46)
l(Jn"(I 3,0 ) +ED™, (LA )+ (3, A 1)I, 0 D)+ED, (LA )
d =- 8 8rl b
IE(Jn"(I NN (RSRCH RN (ST r))+8?—|(Jn'(| M3, 0)+EDM () ()
n=0,12---, 47)
To seek nontrivial data for the generalized coefficients of a,, b,,, ¢, and d,, we obtain the eigenequations
(3= 1,03, N =Q@,0r ) () +1,(r)J,,0r)*=0 (48)

for the clamped case. Similarly, we can obtain the eigenequation

LAl )+ L) r)][lfﬂ(flrr)) ' Jfl(?rr))' (12| ol

0, (49)
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for the smply-supported case. The eigenequation in Eq.(49) is the same with Eq.(35) obtained by using
circulantsin the discrete system.

Derivation of the eigenmode
By substituting the degenerate kernels for the interior point (0 < r < ?) and the relationships of
Egs.(44) and (45) between the generalized coefficients of p(s) and q(s) into Eq.(9) for the clamped case,
we have
W, ()= (3,00 ) (e ) +1,07)3,,(1 7))
(- 1)° J, )t dr)-1,4r)d dr)
3,003, )+, ()
n=1,23--,0<r<r,0£f <2p. (50)
Similar, we can obtain the eigenmode of the smply-supported case. It is interesting to find that the eigen

(a, cog(nf ) +b, sn( nf )),

mode of the clamped and smply-supported cases are very similar. However, the numerica results in the
contour plots are different since different eigenvalues are used.

Numerical results and discussions

A circular plate with a radius (? = 1) subjected to the clamped (v(x) = 0 and ?(x) = 0) and
simply-supported (w(x) = 0 and m(x) = 0) boundary conditions are considered, respectively. In the first
case, analytical solutions of eigenequation and eigenmode are shown in Egs.(34) and (50). To compare
with the Kang and Le€'s results [14], Fig.1 shows the determinant of [SV] versus ? using the present
method of continuous and discrete formulations. The elgenvalues agree well with the analytical solution.
In order to verify our finding, Fig.2 is shows the determinant of [SM] versus ? using the present method
for both clamped and simply-supported plates. The eigensolution of simply-supported plate is
contaminated by the true eigensolution of clamped case. The numerica results match well with our
prediction using continuous and discrete formulation. The former six interior modes obtained are shown
inFig.3.

Conclusions

We have developed a meshless method for the vibration problem of clamped and simply-supported
plates by using the imaginary-part kernd, which was chosen as the RBF to approximate the solution.
Neither boundary elements nor singularities are required. It is interesting to find that spurious
eigensolution of simply-supported case appears to be the true eigensolution of the clamped case. In
addition, the eigenfunction of clamped and simply-supported are of the same form but different
eigenvaues. For a circular plate, the eigenvalue, boundary mode and interior mode were derived
anaytically by using the degenerate kerndl, Fourier series and circulants. Circular plates subject to the
clamped and smply-supported boundary conditions, were demonstrated analyticaly and numericdly to
check the validity of the meshless formulation.
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Table L Comparisons of the NDIF method and present method.

NDIF method

Present method

Radia basis function

W(s,X) = Jo(I 1)

W(s %) =?12(J0(I N)+1,( 1)

e Qs9) =1o(1 1) Qs =160
Clamped plate J (A (r)+3,,30 01, (Ar)=0  (True) 3NN +3,..0nl,0r=0 (True)
J,(Ir)=0 (Spurious) No (Spurious)
Laln) , Jalr) _ 20r La(r) , Ja(r) _ 2r
Simply- ed + = True) + = True
Rahmiad L a0 am Lan 3.0n @ (True)
J,(r)=0 (Spurious) J,0l,,(ry+3,.,0r,(0r)=0 (Spurious)

Dual formulation with SVD updating

————— Ciraulant method
——-——"=-- NDIF method
0 — Present method T <7-79-EI;>.
T <7.143>.-¢
T<6.306>_ '~ *
— 4 <5.906> -~ T
> ] T<7.799>]
5 w1 o ST
o -100 — Rt T <6.3(3_§a—-‘-1-' ST
o T ey <5906z " S T<6.306]
B <3196> - T ‘" TS <7.144>
8 i A7 Bl L T <6.306>
§ o .-r'fﬂS %5.906>
£ 200 — ST /,’ T
= P <3.196>/'./ <4.611>
8 ‘ “'s
> 4 V'
g L
2 ’,.-"’fr
200 | /<3196
s
_.J/s T: trueeigenva ue
Y S: gourious eigenvalue|
T | T | T
2 4 6 8
Frequency paramete
Fig.l
Logarithm curve for def SMy] versus frequency
parameter of the circular clamped plate using the

different methods.

Logarithm values of det [SM]

200

-200 —

-400

Clamped plate
Simply-supported plate

<4.611>."
-
rd

-
T
<4.611>
P
L7 <3.196>
L
;
;a
b T: trueeigenvalue
S: spurious eigenval ue|
T I T I T
2 4 6 8
Frequency parameter
Fig.2

Logarithm curve for def SMy] versus frequency

parameter of thecircular clamped and

smply-supported plate using the present methods.
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Fig.3 The former six modes for the smply-supported circular plate using the present method.
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