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Abstract

The degenerate scale in the boundary integral equation (BIE) or boundary element method (BEM) solution of multiply
connected problem is studied in this paper. For the mathematical analysis, we use the null-field integral equation, degen-
erate kernels and Fourier series to examine the solvability of BIE for multiply connected problem in the discrete system.
Two treatments, the method of adding a rigid body term and CHEEF concept (Combined Helmholtz Exterior integral
Equation Formulation), are applied to remedy the non-unique solution due to the critical scale. The efficiency and accu-
racy of the two regularizations are also addressed. For simplicity without loss of generality, the eccentric case is considered
to demonstrate the occurring mechanism of degenerate scale.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The non-unique solution in BIE or BEM appears in three types such as (a) a rigid body mode for the Neu-
mann problem, (b) the critical size (degenerate scale) of domain and (c) hypersingular formulation for multiply
connected problem with constant Dirichlet boundary condition. The singularity occurs physically and math-
ematically in the sense that the non-unique solution for the singular matrix includes a rigid body solution for
the interior Neumann (traction) problem. The second one is not physically realizable but stems from the zero
singular value of influence matrix in BIEs. The numerical instability or failure due to the degenerate scale is
only imbedded in plane boundary value problems (BVPs). The influence matrix may be singular for the
Dirichlet problem when geometry is special. From the view point of linear algebra, the problem also originates
from the rank-deficiency in the influence matrices. For example, the non-unique solution of a circle with a unit
radius has been noted by Petrovsky (1991) and by Jaswon and Symm (1977). Jaswon and Symm coined the C-
contours in their book. Some mathematicians coined it the critical value, transfinite boundary, transfinite
radius and logarithmic capacity (Yan and Sloan, 1988) since it is mathematically realizable. As follows from
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the classical results summarized in the book by Hille (1962), and also from the review of the paper by Yan and
Sloan (1988), it is easy to see that the degenerate scale of any bounded and multiply connected domain is equal
to the degenerate scale of the outer boundary contour. A simple proof can also be obtained following the steps
of the proof of an analogous statement (Proposition 5) given in the paper by Vodička and Mantič, 2004a,b, in
the case of plane elasticity. From the above mentioned classical results in the potential theory it also follows
that the degenerate scale of a circle is the inverse of its radius. For the Dirichlet problems, some studies for
potential problems (Laplace equation) (Chen et al., 2001), (He et al., 1996) have been done. Also, the degen-
erate scale of multiply connected problem for the Laplace equation was discussed by Tomlinson et al. (1996).
In the recent work, Chen et al. investigated the degenerate scale for the simply connected (circle) and multiply
connected problems (annular) (Chen et al., 2002) by using the degenerate kernels and circulant in a discrete
system. An annular region has also been considered for the harmonic equation (He et al., 1996) and the pos-
sible degenerate scales were studied in both continuous and discrete systems. Regarding to the discrete system,
circulant was employed to study the singularity of the influence matrix. However, circulant property fails
in the eccentric case. To the authors’ best knowledge, proof in continuous system is well documented in the
literature. In potential theory, the problem of the degenerate scales has thoroughly been studied theoretically
in the continuous system in the book by Hille (1962). However, only annular case was studied analytically using
circulant in the discrete system. Additionally, a lot of numerical studies have been carried out by Christiansen
and others. This paper extends the proof of annular problem to eccentric case in the discrete system.

In this paper, we focus on the analytical investigation for the phenomenon of degenerate scale in BIE for
multiply connected problems. The eccentric case is addressed to derive the occurring mechanism of the degen-
erate scale appearance by using degenerate kernels and Fourier series in the null-field integral equation. The
addition of rigid body term in the fundamental solution can move the original degenerate scale to a new
degenerate scale. Besides, the CHEEF technique is proposed to overcome the non-unique solution in the
numerical implementation. The constraint of adding a point outside the domain can promote the rank of
the singular matrix. A numerical example is considered to demonstrate the numerical failure in case of degen-
erate scale. The techniques to avoid the numerical failure or instability are verified. The sensitivity, efficiency
and accuracy of the regularization methods are also examined. The main contribution of this paper is that we
can prove the existence of degenerate scale for eccentric problems in the discrete system in difference to a large
amount of literature in the continuous system.

2. Derivation of the occurring mechanism of degenerate scale

2.1. Boundary integral equations for the Laplace problem

The integral formulation for the domain point of Laplace problem can be derived from Green’s third
identity
2puðxÞ ¼
Z

B
T ðs; xÞuðsÞdBðsÞ �

Z
B

Uðs; xÞtðsÞdBðsÞ; x 2 D; ð1Þ
where s and x are the source and field points, respectively, B is the boundary and D is the domain of interest,
nx is the outward normal vector at the field point x, U(s,x) and T(s,x) are the kernel functions which will be
elaborated on later by using the degenerate kernel expansion. The kernel function, U(s,x), is the fundamental
solution which satisfies
r2Uðx; sÞ ¼ 2pdðx� sÞ; ð2Þ
where d(x � s) denotes the Dirac-delta function. Then, we can obtain the fundamental solution as follows
Uðs; xÞ ¼ ln r; ð3Þ

where r is the distance between s and x (r � jx � sj). The other kernel functions, T(s,x), is defined by
T ðs; xÞ � @Uðs; xÞ
@ns

; ð4Þ
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where ns denotes the outward normal vector at the source point s. In this paper, we utilize the null-field inte-
gral equation to analytically study the degenerate scale problem. Once the field point x is located outside the
domain, the null-field integral equations are obtained as shown below
0 ¼
Z

B
T ðs; xÞuðsÞdBðsÞ �

Z
B

Uðs; xÞtðsÞdBðsÞ; x 2 Dc; ð5Þ
where Dc is the complementary domain. Note that the null-field integral equation is not singular since s and x

never coincide. By using the degenerate kernels, the BIE for the ‘‘boundary point’’ can be easily derived
through the null-field integral equation without the jump and free terms. Based on the separable property,
the kernel function U(s,x) can be expanded into series form by separating the source point and field point
in the polar coordinate:
Uðs; xÞ ¼
U iðR; h; q;/Þ ¼ ln R�

P1
m¼1

1
m

q
R

� �m
cos mðh� /Þ; R P q

U eðR; h; q;/Þ ¼ ln q�
P1
m¼1

1
m

R
q

� �m
cos mðh� /Þ; q > R

8>><
>>: ; ð6Þ
where the superscripts ‘‘i’’ and ‘‘e’’ denote the interior (R P q) and exterior (q > R) cases, respectively. After
taking the normal derivative (o/oR) with respect to Eq. (8), the degenerate form of T(s,x) kernel can be easily
derived according to Eqs. (4) and (6).

2.2. Proof of the existence of the degenerate scale for a multiply connected problem

For simplicity, an eccentric case in Fig. 1 is utilized to analytically demonstrate the existence of the degen-
erate scale by using the degenerate kernels and Fourier series in the null-field integral equation. Regarding to
1
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2 0u =
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1 1u =

D

Fig. 1. Laplace problem for the eccentric case.
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the boundary integration, we set the origin of the observer system at the center of each circle to fully utilize the
degenerate kernels and Fourier series. The null-field integral equation of Eq. (5) can be written as shown
below:
0 ¼
Z

B1

T eðs; xÞu1ðsÞdB1ðsÞ �
Z

B1

U eðs; xÞt1ðsÞdB1ðsÞ

þ
Z

B2

T eðs; xÞu2ðsÞdB2ðsÞ �
Z

B2

U eðs; xÞt2ðsÞdB2ðsÞ; x 2 Dc
1ðx! Bþ1 Þ; ð7Þ

0 ¼
Z

B1

T iðs; xÞu1ðsÞdB1ðsÞ �
Z

B1

U iðs; xÞt1ðsÞdB1ðsÞ

þ
Z

B2

T iðs; xÞu2ðsÞdB2ðsÞ �
Z

B2

U iðs; xÞt2ðsÞdB2ðsÞ; x 2 Dc
2ðx! B�2 Þ; ð8Þ
where B1 and B2 denote the outer and inner boundaries, respectively. Eqs. (7) and (8) are derived from differ-
ent collocations chosen outside the first circular hole ðBþ1 Þ and inside the second one ðB�2 Þ, respectively. It is
noted that the integral path is counterclockwise for the outer boundary. Otherwise, it is clockwise. Eq. (9) can
be calculated by employing the orthogonal relations of trigonometric function as follows:
0 ¼ �p
X1
m¼1

R1

q1

� �m

½a1
m cos m/1 þ b1

m sin m/1�
( )

� 2pR1 ln q1p1
0 �

X1
m¼1

pR1

m
R1

q1

� �m

½p1
m cos m/o þ q1

m sin m/1�
( )

� �p
X1
m¼1

R2

q2

� �m

½a2
m cos m/2 þ b2

m sin m/2�
( )

� 2pR2 ln q2p2
0 �

X1
m¼1

pR2

m
R2

q2

� �m

½p2
m cos m/2 þ q2

m sin m/2�
( )

; ð9Þ
where the boundary data are expressed in term of Fourier series and kernels are expanded into degenerate
(separable) forms. Similarly, Eq. (8) yields
0 ¼ 2pa1
0 þ p

X1
m¼1

q1

R1

� �m

½a1
m cos m/1 þ b1

m sin m/1�
( )

� 2pR1 ln R1p1
0 �

X1
m¼1

pR1

m
q1

R1

� �m

½p1
m cos m/1 þ q1

m sin m/1�
( )

� 2pa2
0 þ p

X1
m¼1

q2

R2

� �m

½a2
m cos m/2 þ b2

m sin m/2�
( )

� 2pR2 ln R2p2
0 �

X1
m¼1

pR2

m
q2

R2

� �m

½p2
m cos m/2 þ q2

m sin m/2�
( )

: ð10Þ
Eqs. (9) and (10) can be assembled to a linear algebraic equation
½U�ftg ¼ ½T�fug; ð11Þ
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and after substituting the boundary conditions as shown in Fig. 1, e.g., Eq. (11)
ð12Þ
When the outer boundary has a radius of one (a1 = 1.0), Eq. (12) results in
ð13Þ
No matter what the null-field point is collocated (Bþ1 and B�2 Þ due to the property of degenerate kernel in Eq.
(6), one column of the influence matrix [U] is a zero vector. The influence matrix is singular for the Dirichlet
problem as the radius a1 is one. This finding extends the proof of annular case where the outer radius of one is
a degenerate scale (Ingham and Kelmanson, 1984; Liu and Lean, 1990). It is straightforward to extend the
result to multiple holes bounded by an outer circle. No matter how many inner holes are randomly distributed
inside the outer boundary, the Dirichlet problem with radius (a1 = 1.0) of the outer boundary is not solvable
due to the rank-deficiency matrix of [U] in Eq. (13). This matches the comment of Vodička and Mantič as
quoted from (Vodička and Mantič, 2004a,b). ‘‘Not only the BIE associated to the exterior BVP is not-invertible

but also that associated to the interior BVP defined on the domain, possibly with cavities, which outer contour is a

boundary of critical domain’’. The zero determinant of [U] results in a degenerate scale. By detecting the zero
eigenvalue of matrix, we can determine the degenerate scale. The main concern of this paper is the mathemat-
ical proof of degenerate scale from an annular region to an eccentric case in the discrete system where circulant
property cannot be applied.

3. Two regularization techniques to solve the non-uniqueness problem

The special scale of outer boundary results in numerical failure and/or instability. A suitable treatment of
unstable system is required to solve the rank-deficiency problem and find a unique solution. Two methods,
adding a rigid body term and CHEEF concept, are adopted to suppress the occurrence of the degenerate scale.

3.1. Method of adding a rigid body term

Since the [U] matrix is singular in the case of degenerate scale, one alternative to treat the problem is to
superimpose a rigid body term in the fundamental solution. The fundamental solution can be modified by add-
ing a rigid body term c,
Umðs; xÞ ¼ Uðs; xÞ þ c; ð14Þ
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where Um(s,x) means the modified kernel function. The element on the first column of influence matrix [U] in
Eq. (14) is added by 2pa1c where a1 is the radius of the outer circle. Then, the zero singular value in [U] is
shifted to a nonzero singular value for [Um]. To demonstrate the effectiveness, the determinant versus radius
a1 after using the modified fundamental solution is examined in the following example.

3.2. CHEEF concept

Since the outer radius a1 is equal to ‘‘one’’, the influence matrix is singular. In order to promote the rank of
[U] matrix, the CHEEF concept by collocating the point outside the domain as an auxiliary constraint is
applied to deal with this problem. By adding the CHEEF points outside the domain for the null-field BIE,
the additional constraint is
Fig. 2.
contou
hwiftg ¼ hvifug; ð15Þ
2
0.4a =

0u =

1 1.0a =

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
1u =

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

(d)(c)

(a) Problem statements; (b) contour plot for the method of adding a rigid body term; (c) contour plot for the CHEEF concept; (d)
r plot for the exact solution.
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where hwi and hvi are the influence row vectors. By combining Eq. (11) with Eq. (15), an over-determined sys-
tem is acquired
½U�
hwi

� 	
ftg ¼

½T�
hvi

� 	
fug ð16Þ� 	
The zero singular value of [U] is changed to the nonzero singular value of
½U�
hwi .

To obtain a squared system in the CHEEF method, either SVD or least squares techniques can be
employed to solve Eq. (16).

4. Illustrative example and discussions

An eccentric case in Fig. 2(a) is examined which has the outer radius of 1 m (a1 = 1.0 m) and the inner
radius of 0.4 m (a2 = 0.4 m). The essential boundary conditions on B1 and B2 are u1 = 1 and u2 = 0, respec-
tively. Twenty-one collocation points are both chosen on the outer and inner boundaries. After introducing
the two regularization techniques, the non-uniqueness problem due to the critical scale is solved. Fig. 2(b)
and (c) show the contour plots of potential after adding a rigid body mode and CHEEF point for comparison
with the exact solution of Fig. 2(d). Good agreement is made. The minimum singular value versus the radius
a1 is plotted in Fig. 3 by using the singular formulation in conjunction with the method of adding a rigid body
term c = 1.0 and adding a CHEEF point outside the domain (5.0,5.0). The boundary flux by using the two
regularization methods is shown in Fig. 4. Besides, Fig. 5 shows the relative error. According to Figs. 4
and 5, it is found that the addition of rigid body term is more accurate than choosing the CHEEF point. Also,
the selection of CHEEF point is more sensitive than the constant rigid body term. The far CHEEF point
improves the solution. The sensitivity of the rigid body term is not evident. Numerically speaking, addition
of rigid body term is easier since one CHEEF point makes the number of equation larger in the linear alge-
braic system.
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Fig. 3. The minimum singular value versus radius a1 using different methods for the eccentric case.
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5. Concluding remarks

The paper dealt with the Dirichlet problem for Laplace equation solved by the singular BIE in a special case
of bounded and multiply connected domains in plane given by circular boundary curves. The contribution of
the work is to show in an explicit analytic way, by means of an expansion of the integral kernel functions using
degenerate kernels, how this degenerate scale appears if the unknown boundary density is approximated by a
Fourier series of trigonometric functions. Also two methods how to avoid the singularity of the linear system
matrix for a truncated Fourier series were proposed. We have proved the existence of degenerate scale for mul-
tiply connected problem subject to the Dirichlet boundary condition through an eccentric case in the discrete
system. It can be easily extended the result to the problem containing multiple circles. The unit radius for the
outer boundary is a degenerate scale if the singular equation is used. For the degenerate scale problem, the
method of adding a rigid body term and CHEEF concept, have been successfully adopted to regularize
the solution. The CHEEF technique can promote the rank while the method of adding a rigid body term intro-
duces another degenerate scale. The sensitivity of the parameters of rigid body term and location of CHEEF
point on the solution is also addressed. The numerical experiment of the eccentric problem was performed to
demonstrate the validity of the remedies.
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Vodička, R., Mantič, V., 2004a. On invertibility of elastic single-layer potential operator. Journal of Elasticity 74, 147–173.
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