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Why the Results Diverge by Using MSC/NASTRAN ?

• Rayleigh Damping Proportional to Mass Only

• Large Stiffness Method Considering the Former Modes

• Discontinuity Between Boundary (B.C.) and Initial Conditions(I.C.)
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Sources of  Divergence  in  Modal Dynamics by Crandall

• S. H. Crandall and A. Yildiz , Transactions of the ASME, 1962

Beam modal (Euler-Bernoulli, Rayleigh, Timoshenko and shear beam)

Damping mechanism (Rayleigh, viscoelastic, internal, external damping)

Random response (primary and secondary fields)

Transient response is not available

Loading type (boundary force and support excitations are not available) 



Sources  of  Divergence in This Paper

• Rayleigh damping  proportional to mass only for support motion

• Series solution without considering the boundary effect for support 
motion

• Large stiffness technique without considering the contributions of high 

frequency modes

• Discontinuity  between boundary and initial conditions



New Concept  of Modal Participation Factor(MPF) 

• Modal displacement governs the  MPF  for body force excitations

• Modal  displacement governs the MPF for boundary force excitations

• Modal reaction governs the MPF for boundary support excitations
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Discrete MDOF System

Bridge Building DamModel
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• Response               Superposition of Modal Response (ABS, CQC, SRSS)
Modal Participation Factor 
+ Response Spectrum

Support Motion Problems
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• Governing Equation:

• Decomposition:

• Quasi-static Part:

Formulations 
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• Mode superposition

• Modal  Equation

• Modal Participation Factor (Conventional Method)

• Modal Participation Factor (Modal Reaction Method)

Modal Formulations 
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Methods of Solution for Multi-Support Motions

• Large Mass Technique          (1983)                  Multi-support Motions(1992)  

• Large Stiffness Technique    (1983)                  Multi-support Motions(1992)

• Cesaro Sum                            (1890)                  Base Shear Force       (1992)

• Quasi-static Decomposition  (1950)                  Discrete System   (1975)

• Stokes’ Transformation        (1880)                  Base  Shear Force      (1993)



Methods of Solution for Multi-Support Motions

• Mode Superposition (Series Solution)

• Large Mass Technique (Including Rigid Body Modes)

• Large Stiffness Technique (Including High Frequency Modes)

• Cesaro sum

• Quasi-static Decomposition (Mindlin)

• Stokes’ Transformation



Capabilities of Multi-support Excitation in FEM Packages

• MSC/NASTRAN
Large mass technique
Large stiffness technique

• ABAQUS
Single base excitation(   BASE MOTION), modal reaction available

• SAP90, ETABS
?

• MLTDYN(NTUCE)
Modal reaction method

*



Large Stiffness Method and Large Mass Method

Large mass Large stiffness Large mass Large stiffness



Large Stiffness Technique

• Large Stiffness Technique (Without Including High Frequency Modes)
Divergence (slope, moment and shear force)

• Large Stiffness Technique (Including High Frequency Modes)

Boundary effect (moment and shear force)

• Large Stiffness Ratio

• The Additional High Frequency Modes Display the Boundary Terms

106



Large Mass Technique

• Large Mass Technique (Without Including Rigid Body Modes)
Divergence (slope, moment and shear force)

• Large Mass Technique (Including Rigid Body Modes)

Boundary effect (moment and shear force)

• Large Mass Ratio

• The Rigid Body Modes Display the Boundary Terms

106



Results of Large Stiffness Method
Without  Considering High Frequency Modes

Displacement 

Slope

Moment

Shear force



Results of Large Stiffness Method
Including High Frequency Modes

Displacement 

Slope

Moment

Shear force



Rayleigh Damping Model 

• Rayleigh Damping Proportional to Mass Only  , 0 [ ] [ ] [ ]C M K= + =α β β

α β,     fixed ξ1 = 0.   05 fixed



Divergence Due to Mass Proportional Damping 

Displacement 

Shear force 

Moment 

Slope 



Divergence of Acceleration Profile Due to Discontinuity Between 
Boundary and Initial Conditions at t=0 second

Displacement
(Initial condition)

Velocity
(Initial condition)

Acceleration
(Divergence) 



Large stiffness method
(with high freq. modes)

Displacement 

Analytical
results 

Displacement and Acceleration Histories at the Middle Point x/l=0.5 
Due to Discontinuity Between Boundary and Initial Conditions 

Displacement Displacement 

Acceleration Acceleration Acceleration 

Large stiffness method    
(no high freq. modes)

 



Relations of Series Representation, Large Stiffness Technique, Cesaro
Sum, Quasi-static Decomposition and Stokes’ Transformation



Motivations of Quasi-static Decomposition and Stokes’ Transformation

Quasi-static decomposition Stokes’ transformation 
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(Physical meaning) 

(Mathematical way) 

Differentiation Integration 

n

N

n nb t u x
=
∑ =

0

( ) ( )' Series representation 
for distribution on boundary 

−∞  

∞ + F P. .  −∞  
q t c t q tn n n( ) ( ) ( )= +

U x t c t u x
n

N

n n( , ) ( ) ( )≅ −
=
∑

0

 

∞ + F P. .

Asymptotic
analysis  



Three  Analytical Ways and Two Simulation Techniques 
to Introduce the Quasi-static Part

• By Solving Boundary Value Problem Directly 
Quasi-static decomposition method (Mindlin and Goodman)

• By Integrating the Secondary Field Derived from Stokes’ Transformation

Boundary terms are available

• By Adding and Subtracting Technique Using Asymptotic Analysis

Series representation (Eringen and Suhubi, Yeh and Liaw)

• Large Mass Technique (MSC/NASTRAN) --- Rigid Body Modes

• Large Stiffness Technique (MSC/NASTRAN) --- High Frequency Modes



Cesaro Regularization Technique

• Series Solution(Partial Sum)
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Stokes’ Transformation

• Term by Term Differentiation Is Not Always Legal
• Boundary Term  Is Present for Some Cases

if 

• Term by Term Differentiation Is  Legal 
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The Series Representation Solutions of the Three Analytical 
Formulations



The Proper Use of Each Method for Different Structures



Conclusions

• Sources of Divergence Have Been Identified
• New Point of View for Modal Participation Factor has been developed

Physical meaning
To save CPU time  (100 : 1)

• New Method for Multi-support Motion --- Stokes’ Transformation
Free from calculating quasi-static solution
Accelerate convergence rate

• Large Stiffness and Large Mass Technique Have Been Tested
Boundary effect of moment and shear diagrams should be noted
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