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Applications of singular value decomposition to
two-dimensional acoustic problems
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Abstract

In this report, the principal objective is to study the physical meaning of the singular value
decomposition (SVD) in exterior acoustics. The degenerate kernel and image method are employed to
derive the Green's function. The Green's function can be represented by the singular value expansion
(SVE). The Green's matrix describes the field of acoustic pressure to the strengths of sources on the
surface of a body, which radiates or scatters sound. The matrix decomposed by the SVD technique
resulted in a set of singular values and two sets of orthogonal singular vectors. The singular value
relates to the radiation efficiency and the two sets of orthogonal unitary vectors describe field mode
shapes and source mode shapes, respectively. In addition, the relationship between the unitary vectors
provided by the SVD and the basis function provided by singular value expansion is constructed. The
acoustic radiation mode shape of a circular cylinder is obtained by using the SVD technique and is
compared with the analytical solution by using the singular value expansion.

Keywords: singular value decomposition (SVD) ; singular value expansion (SVE) ; radiation efficiency ;
radiation mode
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2 ~ INTRODUCTION

Recently, the singular value decomposition (SVD)
technique has been adopted to study the fictitious
frequency [1,2] and the spurious eigenvalue [3,4]
successfully. In analyzing the acoustic radiated power
and radiation efficiency, the SVD technique also plays
an important role. Chen [5] employed the eigenvalue
analysis to examine the physical meaning of surface
complex acoustic power and its relationship to
acoustic radiation efficiency. Borgiotti [6] was the first
to employ the SVD technique to analyze the radiation
from a vibrating structure into the far field. Nelson and
Kahana [7] used the SVD technique to decompose the
Green's function. They tried to connect the
decomposition and the basis functions of classical
acoustics for three-dimensional case. It was found that
the left and right singular vectors associated with the
SVD related to the sampled spherical harmonics by a
unitary transformation. However, the formulation of
the transformation matrix is not clear in their paper. In
the present work, we will focus on the relationship
between the unitary vectors provided by the SVD and
the basis function provided by the SVE. Based on the
degenerate kernels, the image method is used to obtain
the Green's function of the radiation field. A circular
case is demonstrated to study the result of SVD and is
compared to the result of the Green's function matrix.
The Green's function matrix displayed in a singular
value expansion (SVE) form. The relationship
between the unitary vectors and the basis function will
be connected.

3 ~ The image method of acoustic
field

The Green's function, G(x,s), relating to the acoustic
pressure of field to the strengths of source on the

boundary, satisfies
(V> +k*)G(x,s) = 225(X —S)
1

where §(x—s) is the Dirac delta function. For the
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auxiliary system subject to the Neumann boundary

condition, the Green's function must satisfy
oG =0, (xonB),

A

on

)

where N, denotes the outnormal direction at the
boundary point x. By employing the image method, we
have

G(x,s)=U(x,s) +U(x,s")

@)

where U(x,s) is the fundamental solution and U(x,s') is
the fundamental solution of the image system with a
point sink at the image point s'. By using the two bases
of the first kind Hankel and Bessel functions of the

n-th order and their derivatives,Hrgl)(kx), J,(kx) Wwe

can decompose the two-dimensional kernel function

into
U(pdiRO)= Y 5 HP ko), (KR)O, (0)0; (6). p > R,
U(x,s) = B "T;*ii” B
U(pFiR0) = 3 ZTHP(R)I, (k)O, (000, (). p <R,
4

where “+” denote Hermintian conjugate and
0,(0)=¢e" x=(p,4) s=(R,0)
and s'=(R’,8) in the polar coordinate. The

®n(¢7) = ein¢ !

definitions of p, ¢ , R, @, R’ rand r' are

shown in Fig.1. We can rewrite the Green's function as

follows:
G(x,5)=U*(p,4;R,0)-U'(p,4;R",0) :

©)

subject to the Neumann boundary condition
aG(x.s) _0U*(p.#;:R.0) dU'(p.4;R0) _
an an, an,

X

0.

(6)
When the field point x locates on the boundary of the
circle with a radius a, substitution of Eq.(4) into

Eq.(6), the relationship between the R' and R is
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obtained
HY (kR)J; (ka)

J,(kR) = H’(l)(ka)

U]
By substituting Eqgs.(4) and (7) into Eq.(5), and the

symmetry property, the Green function is derived,

G50 =17 37 I, (R) = H (R)J; (k)

&) N+ '
2 & HO (ka) HO k)0, ($)0;(9)

®)
The acoustic pressure field u(x) can be obtained

o 1@ _ R
() =iepd(§) 3 ,'j,zT‘('l‘g@nw )0; )
©

where ¢ is the sound velocity and p, is the density
and t(§) is the velocity strength of a point source at

(@,0)-

4 ~ The singular value
decomposition for the Green's
matrix

By For the readers' convenience, the [G] denotes
the Green's matrix obtained by using BEM and the
[G(s,x)] denotes the Green's function matrix obtained
by the Green's function in this chapter. In BEM
implementation, the boundary of a circle is discretized
into V constant elements. If the P field points and the
V source points are considered and v BJ and

BJ denote the acoustic pressure and normal
velocity vectors on the boundary, respectively, then
the boundary and the domain integral equations can be
modified and assembled by the following matrix form,

[Tel{us}=[Us{te}
(10)

u(x) =[ToHug}—[Up Hte}
(11)

where {u(x)} is the vector whose elements define the
field pressure for the domain point x, Ty, Uy are

Redsh<g “F o3& 31

the boundary influence matrices on the boundary,
Ty, . U, are the domain influence matrices,
respectively. Substituting Eq.(10) into Eq.(11), we
have

{u()}=([To1Me] " Vel - Vo DAt} =[Gt}

(12)

The SVD enables any arbitrary complex matrix [G] of

order P xV , the SVD of the Green's function
matrix can be expressed in such that [G]= iaiﬁﬁa‘//f'
=1

where the Green's matrix is shown to consist of a

linear superposition of N submatrices.

5 -~ The singular value expansion
of the Green's function matrix

We use Eq.(9) to define the elements of the Green's
function G(§,x) relating the acoustic pressure at
number of P points in the sound field to the source
strength at number of V points on the boundary of the

domain. The Green's function matrix can be written in

the form
$0.0,@0:0) & Yo0.@e @) ¢
n=—Mm n=—m
M _ " M _ ”
[G(évx)]:"m Zgn@)n(%)@;(@) A Zgn®n(¢2)®;(9v)
M M M 0 M M
2.9,0,)0,@0) A Y0,0,4:)9;(0,)
3)
where . H®(kp) . Since each term in the series
gn - IpOC H'(l)(ka)

comprising each element of the matrix is weighted by
the same factor {,,, it is possible to write the matrix

as a singular value expansion having the form
. .o . , i hich
GEX=lim X.0.2.6)0;(6,) " " M 2a(6)

M —>% n=—M

and Qn(é/) are the left and right singular vectors,

respectively.
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6 ~ The singular value expansion
and the singular value
decomposition

It will be demonstrated by the numerical simulations
presented below that there is indeed, under certain
circumstances, a direct connection between the results
of the components (@ and ) in the singular value

decomposition for the Green's matrix and the matrices
o) and @(év) of the SVE. Now, we connected

the ®, ¥, ©(4,) and @(@,)by a transformation
matrix pg,) andr(gv), Respectively.

The
[G]= (¢ )T ()2 (6,)0" (6;) » Where 3, is the

Green's matrix can be written as

diagonal matrix of the N non-zero real singular values.
It is evident from that the diagonal matrix A of the

complex amplitudes is given by

A= r(%P)ZNFJr @,)- (14)
We obtained the relationship between they of the
SVD and the A of the SVE.

7~ NUMERICAL EXAMPLES

For the numerical experiments, we consider an
infinite circular cylinder with radius a. 1lm .
Thirty points were adopted in the boundary element
mesh for a circular boundary and observation field.
The source points on the surface and the observation
points are shown in Fig.2. The first five columns of
® and ¥ matrices for the circular cylinder with

thirty points at =10m

, are shown in Fig.3 for the
cases of ka=0.01. The dotted line and solid line denote
the imaginary-part and the real-part of the vector,
respectively. The x axis denotes the angular degrees of
the position for the source points in Yi and for the
observation points in ¢i. The y axis denotes the
amplitude of singular vectors in the ® or ¥
matrices. Figure 3 show that the magnitude of the
individual component is unchanged, but their phase

may be different. The figure matches the harmonic

10
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bases in the SVD.

8 ~ CONCLUSIONS

In In this paper, we have demonstrated the
effectiveness of the SVD technique in solving exterior
acoustics. The physical meaning of the SVD has been
the
conjunction with the degenerate kernel function to

examined. We applied image method in
obtain the Green's function. The connection between
the unitary vectors in the Green's matrix provided by
the SVD and the function provided by the singular
value expansion has been investigated. The unitary
vectors are the basis functions for a diagonal
transformation with respect to the generalized
coordinate. The left and right singular vectors of the
SVD of the Green's matrix yield two sets of
orthogonal basis functions describing field mode

shapes and source mode shapes, respectively
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Fig.2 The nodes of boundary element mesh A
and observation points A
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Figure 3. The first five columns of @ and W matrices for the circular cylinder at L =10.0 m for k=0.01

using thirty observation points.
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