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Abstract

We provide a perspective on the degenerate problems, including degenerate scale, degenerate
boundary, spurious eigensolution and fictitious frequency, in the boundary integral formulation.
All the degenerate problems originate from the rank deficiency in the influence matrix. Both the
Fredholm alternative theorem and singular value decomposition (SVD) technique are employed
to study the degenerate problems. Updating terms and updating documents of the SVD technique
are utilized. The roles of right and left unitary vectors of the influence matrices in BEM and their
relations to true, spurious and fictitious modes are examined by using the Fredholm alternative
theorem. A unified method for dealing with the degenerate problem in BEM is proposed. For
the degenerate scale problem, three regularization techniques, hypersingular formulation, method
of adding a rigid body mode and CHEEF concept, are employed to deal with the rank-deficiency
problem. Instead of direct searching for the degenerate scale by trial and error, a more efficient
technique is proposed to directly obtain the singular case since only one normal scale needs to be
computed. The existence of degenerate scale is proved for the two-dimensional Laplace problem
using the integral formulation. The addition of a rigid body terqnin the fundamental solution

can shift the original degenerate scale to a new degenerate scale by & factastead of using

either the multi-domain BEM or the dual BEM for degenerate-boundary problems, the eigenso-
lutions for membranes with stringers are obtained in a single domain by using the conventional
BEM in conjunction with the SVD technique. The occuring mechanism of both the spurious and
fictitious eigensolutions are unified by using the Fredholm alternative theorem and SVD tech-
nique. The criterion to check the validity of CHIEF and CHEEF points is also addressed. Several

examples are demonstrated to check the validity of the proposed method.

XIV



Chapter 1

Introduction

1.1 Degenerate problems in BEM

The boundary integral equation method (BIEM) and the boundary element method (BEM) have
received much attention since Rizzo [121] proposed a numerical treatment of the boundary inte-
gral equation for elastostatics. Most of the efforts have been focused on the singular boundary
integral equation for primary fielde(@ potentialu or displacementr). For most problems, the
formulation of a singular boundary integral equation for the primary field provides sufficient con-
ditions to ensure a unique solution. In some caseag,those with Hermite polynomial elements
[131], degenerate boundaries [66, 76, 77, 119], corners [33], the construction of a symmetric
matrix [4, 5, 88], the improvement of condition numbers [31], the construction of an image sys-
tem [31], the tangent flux or hoop stress calculation on the boundary [44], an error indicator in
the adaptive BEM [103], fictitious (irregular) frequencies in exterior acoustics [97, 98], spurious
eigenvalues in the real-part BEM [36, 100, 101], the imaginary-part BEM [39, 40] and the mul-
tiple reciprocity method (MRM) [48, 47, 136, 137], degenerate scale [41, 46, 57, 60, 72] and the
Tikhonov formulation for inverse problems, it is found that the integral representation for a pri-
mary field can not provide sufficient constraints. In another words, the influence matrices are rank
deficient. It is well known that the hypersingular equation plays an important role in the afore-
mentioned problems. Many researchers have paid attention to the hypersingular equation. One
can consult the review article on hypersingularity can be found in Chen and Hong [27]. The hy-
persingular formulation provides the theoretical bases for degenerate boundary problems. Totally
speaking, four degenerate problems in BEM, degenerate scale, degenerate boundary, spurious
eigenvalues and fictitious frequency, are encountered. In the following, the four rank-deficiency

sources are reviewed as follows.



1.2 Degenerate scale for 2-D Laplace and Navier problems

It is well known that rigid body motion test or so called use of simple solution can be employed

to examine the singular matrices in BEM for the strongly singular and hypersingular kernels in
the problems without degenerate boundaries. Zero eigenvalues associated with rigid body modes
are imbedded in the corresponding influence matrices. In such a case, singular matrix occurs
physically and mathematically. The nonunique solution for a singular matrix is found to include

a rigid body term for the interior Neumann (traction) problem. However, for a certain geometry,
the influence matrix of the weakly singular kernel may be singular for the Dirichlet problem
[53]. In another words, the numerical results may be unstable when the used scale is changed or
the considered domain is expanded to a special size. The nonunique solution is not physically
realizable but results from the zero eigenvalue of the influence matrix in the BEM. The special
geometry dimension which results in a nonunique solution for a potential problem is called a
degenerate scale by He [72] and Cletral. [46]. The term “scale” stems from the fact that
degenerate mechanism depends on the geometry size used in the BEM implementation. Some
mathematicians [55, 60] coined it a critical value (C.V.) since it is mathematically realizable. For
several specific boundary conditions, some studies for potential problems (Laplace equations)
[46], plate problems (biharmonic equations) [60] and plane elasticity problems [41, 72] have
been done. The difficulties due to nonuniqueness of solutions were overcome by the necessary and
sufficient boundary integral formulation [72] and boundary contour method [143]. The degenerate
scale problems in the BEM have been studied analytically by Kuhn [99] and Constanda [57] and
numerical experiments have been performed [46]. Degenerate kernels and circulant matrices were
employed to determine the eigenvalues for the influence matrices analytically in a discrete system
for circular and annular problems [46]. The singularity pattern distributed along a ring boundary
resulting in a null field can be obtained when the ring boundary is a degenerate scale. An annular
region has also been considered for the harmonic equation [76] and the biharmonic equation [111]
and the possible degenerate scales were investigated. Hypersingular formulation is an alternative
to study the degenerate scale problems for simply-connected problems [41], since eigenvalues are
never zero. Another simple approach is to superimpose a rigid body motion in the fundamental

solution so that the zero eigenvalue can be shifted to be nonzero. However, this treatment results



in another degenerate scale. By employing the CHIEF concept [14], a CHEEF approach was

developed to obtain the independent constraint.

A unified method will be proposed to study the problem by using the Fredholm alternative
theorem and SVD updating technique. Both the spurious mode (mathematically realizable) and
rigid body mode (physically realizable) can be determined. The roles of left and right unitary
matrices in SVD for BEM will be examined. In addition, a direct treatment in the matrix operation

instead of adding a rigid body term in the fundamental solution can be derived.

1.3 Degenerate boundary in boundary value problems

For the problem with a degenerate boundary, the dual integral representation has been proposed
for crack problems in elasticity by Hong and Chen [76, 77], and boundary element researchers
[66, 67, 110, 119, 124, 133, 138] have increasingly paid attention to the second equation of the
dual representation. The second equation, which is derived for the secondarg.fieltiuik ¢ or
tractiont), is very popular now and is termed the hypersingular boundary integral equation. Hong
and Chen [76] presented the theoretical bases of the dual integral equations in a general formu-
lation which incorporates the displacement and traction boundary integral equations. Huang and
So [80] extended the concept of the Hadamard principal value in the dual integral equations [76]
to determine the dynamic stress intensity factors of multiple cracks. Gray [66, 67] also indepen-
dently found the hypersingular integral representations for the Laplace equation and the Navier
equation although he did not coin the formulation “dual’. Martin, Rizzo and Gonsalves [109]
called the new kernel in the dual integral equations “hypersingular” while Kaya [92] earlier called
the kernel “superstrong singularity”. Since the formulation was derived for the secondary field,
by analogy with the term “natural boundary condition”, Feng and Yu [65, 139, 141] called the
method “natural BEM” or “canonical integral equations”. Balas, Sladek and Sladek in their book
[6] proposed a unified theory for crack problems by using the displacement boundary integral
equation and another integro-differential equation for the traction field. Based on the dual integral
representation for the degenerate boundary problems, Hong and Chen developed the dual BEM

programs for crack [76] and potential flow problems with a cutoff wall [35]. Besides, Chen and



his coworkers extended the dual BEM program for the Laplace equation and the Navier equation
to three programs. One is for the Helmholtz equation by the dual MRM [37]. Another is for the
Helmholtz equation by the complex-valued formulation [135, 136]. The other is for the modified
Helmholtz equation [50]. A general purpose program, BEASY, was developed for crack problems
by the Wessex Institute of Technology (WIT) and termed the “dual boundary element method
(DBEM)” [119, 138]. This program has been extended to solve crack growth problems more
efficiently by using the benefit of the single-domain approach [101, 138]. Chen and Hong [27],
Mi and Aliabadi [110] extended two-dimensional cases to three-dimensional crack problems. A
program implemented by Lutt al. [107] was also reported. In the mathematical literature, the
relationships between the boundary integral operators and various layer potentials are obtainable
through the so-called Calderon projector [31]. Four identities to relate the four kernels have been
constructed. The order of pseudo-differential operator for the integral equations on the circular
case in the dual formulation was discussed by Amini [2], Chen and Chiu [25]. Detailed discus-
sions can be found in [113, 115]. These mathematical problems were first studied by Hadamard
[70] and Mangler [108]. The hypersingular integral equation was derived by Hadamard in solv-
ing the cylindrical wave equation by employing the spherical means of descent. The improper
integral was then defined by Tuck [129] as the “Hadamard principal value”. Almost at the same
time of Hadamard’s work, Mangler derived the same mathematical form in solving a thin airfoil
problem. This is the reason why the improper integral of hypersingularity is called the “Mangler
principal value” in theoretical aerodynamics [3]. This nonintegrable integral of hypersingularity
[115] arises naturally in the dual boundary integral representations especially for problems with
degenerate boundariesg, crack problems in elasticity [31, 76, 77], heat flow through a baffle
[29], Darcy flow around a cutoff wall [127], a cracked bar under torsion [23], screen impinging in
acoustics [21, 51, 48, 105, 127], antenna in electromagnetic wave [64], a thin breakwater [50] and
aerodynamic problems of a thin airfoil [130]. Applications of the hypersingular integral equation
in mechanics were discussed by Maréinhal. [109] and by Chen and Hong [31]. Combining

the singular integral equationa,g, Green'’s identity (scalar field) or Somigliana’s identity (vector
field), with the hypersingular integral equation, we can construct the dual integral equations ac-

cording to the continuous and discontinuous properties of the potential as the field point moves



across the boundary [35]. From the above point of view, the definition afdulaé(boundary) in-

tegral equationss quite different from that of thdual integral equationgjiven by Sneddon and
Lowangrub [125] and Buecker [10], which, indeed, come from the same equation but different
collocation points in crack problems of elastodynamics. The solution for the conventional dual
integral equations was first studied by Beltrami [56]. The dual boundary integral equations for the
primary and secondary fields defined and coined by Hong and Chen are generally independent of

each other, and only for very special cases are they dependent [18].

To deal with the degenerate boundary problems, the hypersingular formulation is a powerful
method in conjunction with the dual BEM. However, regularization for hypersingularity is re-
quired. To avoid hypersingularity, one alternative has been proposed by using the multi-domain
approach of singular equation in sacrifice of introducing artificial boundary where the continuity
and equilibrium conditions on the interface boundary are considered to condense the matrix. We
may wonder whether it is possible to solve the degenerate problems by using only the singular
equation in the single-domain approach. The SVD technique will be considered to achieve the

goal.

1.4 Spurious eigensolutions for interior eigenproblems

For interior problems, eigendata are very important informations in vibrations and acoustics. Ac-
cording to the complex-valued boundary element method [21, 22, 43], the eigenvalues and eigen-
modes can be determined. Nevertheless, complex arithmetic is required. To avoid complex arith-
metic, many approaches including the multiple reciprocity method (MRM) [117], the real-part
[100, 101, 37] and the imaginary-part BEMs [39, 63] have been proposed. For example, Tai and
Shaw [126] employed only real-part kernel in the integral formulation. A simplified method using
only the real-part or imaginary-part kernel was also presented by De Mey [63] and Hutchinson
[81]. Although De Mey found that the zeros for a real-part of the complex determinant may be
different from the determinant using the real-part kernel, the spurious eigensolutions were not
discovered analytically. Chen and Wong [47] and Yeilal. [135, 136] found the spurious eigen-

solutions analytically in the MRM using simple examples of rod and beam, respectively. Later,



Kamiyaet al. [86] and Yeihet al. [137] independently claimed that MRM is ho more than the real-
part BEM. Kanget al. [91] employed the Nondimensional Dynamic Influence Function method
(NDIF) to solve the eigenproblem. Chenal. [40] commented that the NDIF method is a special
case of imaginary-part BEM. Kang and Lee also found the spurious eigensolutions and filtered
out the spurious eigenvalues by using the net approach [89]. Later, they extended to solve plate
vibration problems [90]. Cheet al. [19] proposed a double-layer potential approach to filter out

the spurious eigenmodes. The reason why spurious eigenvalues occur in the real-part BEM is the
loss of the constraints, which was investigated by Yihl. [137]. The spurious eigensolutions

and fictitious frequencies arise from an improper approximation of the null space operator [123].
The fewer number of constraint equations makes the solution space larger. Spurious eigensolu-
tions were also found in the Maxwell equation [9]. The spurious eigensolutions can be filtered
out by using many alternatives,g.,the complex-valued BEM [22], the domain partition tech-
nique [12], the dual formulation in conjunction with the SVD updating techniques [26, 36, 37]
and the CHEEF (Combined Helmholtz Exterior integral Equation Formulation) method [14]. Be-
sides, the spurious eigensolution for the multiply-connected problem was found even though the

complex-valued kernel was used [45].

A unified formulation to study the phenomenon will be proposed by using the Fredholm
alternative theorem and SVD technique. SVD updating techniques in conjunction with the dual
formulation will be employed to sort out the true and spurious eigenvalues. In addition, the

relation between the left unitary vector in SVD and the spurious mode will be discussed.

1.5 Fictitious frequency in exterior acoustics

For exterior acoustics, the solution to the boundary is perfectly unique for all wave numbers. This
is not the case for the numerical treatment of integral equation formulation, which breaks down at
certain frequency known as irregular frequency or fictitious frequency. This problem is completely
nonphysical because there are no discrete eigenvalues for the exterior problems. It was found that
the singular UT) equation results in fictitious frequencies which are associated with the interior

eigenfrequency of the Dirichlet problems while the hypersinguld)(equation produces ficti-



tious frequencies which are associated with the interior eigenfrequency of the Neumann problems
[18]. The general derivation was provided in a continuous system [18], and a discrete system was
analytically studied using the properties of circulant for a circular case [20, 38]. Schenck [122]
proposed a CHIEF (Combined Helmholtz Interior integral Equation Formulation) method, which
is easy to implement and is efficient but still has some drawbacks. Burton and Miller [11] pro-
posed an integral equation that was valid for all wave numbers by forming a linear combination of
the singular integral equation and its normal derivative through an imaginary constant. In case of
a fictitious frequency, the resulting coefficient matrix for the exterior acoustic problems becomes
ill-conditioned. This means that the boundary integral equations are not linearly independent and
the resulted matrix is rank deficient. In the fictitious-frequency case, the rank of the coefficient
matrix is less than the number of the boundary unknowns. The SVD updating technique can be
employed to detect the possible fictitious frequencies and modes by checking whether the first

minimum singular valueyy, is zero or not [14].

By employing the Fredholm alternative theorem and SVD updating technique, the degener-
ate mechanism for the four numerical problems, degenerate boundary, degenerate scale, spurious
eigenvalues and fictitious frequencies, will be studied. A unified formulation will be constructed
to solve for rank-deficiency problems. lllustrative examples will be illustrated to check the valid-

ity of the proposed method.

1.6 Scope of the thesis

In this thesis, the degenerate problems, degenerate boundary, degenerate scale, spurious eigenval-
ues and fictitious frequencies, will be studied by using the BEM in conjunction with the Fredholm
alternative theorem and SVD updating technique. The emphasis of each chapter are summarized
below. In Chapter 2, a more efficient technique is proposed to directly obtain the singular case
since only one normal scale needs to be computed without direct searching for the degenerate
scale by trial and error. We will prove the existence of degenerate scale for the two-dimensional
Laplace problem using the integral formulation. Besides, it is found that the addition of a rigid

body term,c, in the fundamental solution can shift the original degenerate scale to a new degen-



erate scale by a facter <. To deal with the numerical instability due to the degenerate scale,
three approaches, method of adding a rigid body mode, hypersingular formulation and CHEEF
method, will be applied to remove the zero singular value. In Chapter 3, instead of using either
the multi-domain BEM or the dual BEM, the degenerate boundary eigenproblem will be solved
by using the conventional BEM in conjunction with the SVD technique. Chapter 4 will focus
on sorting out the true and spurious eigenvalues with the Fredholm alternative theorem and SVD
techniques in conjunction with the dual BEM. In addition, we also review the four methods, the
complex-valued formulation, the real-part, the imaginary-part BEMs and MRM. The possible oc-
curence of spurious eigensolutions in the four approaches will be addressed. In Chapter 5, we
obtain the ficitious modes in the singular vectors of SVD as well as the true eigenmodes for the
interior problems at the same time once the updating matrix was decomposed by using the SVD
technique. A criterion for checking the minimum number and validity of the CHIEF points will

be studied analytically in the discrete system.



Chapter 2

Degenerate scale for torsion bar problems with arbitrary cross
sections using the dual BEM

Summary

In this thesis, torsion bar problems are solved by using the dual BEM. It is found that a degen-
erate scale problem occurs if the conventional BEM is used. In this case, the influence matrix
is rank deficient and numerical results become unstable. Both the circular and elliptical bars are
studied analytically in the continuous system. In the discrete system, the Fredholm alternative
theorem in conjunction with the SVD updating documents is employed to sort out the spurious
mode which causes the numerical instability. Three regularization techniques, method of adding
a rigid body mode, hypersingular formulation and CHEEF concept, are employed to deal with
the rank-deficiency problem. The existence of degenerate scale is proved for the two-dimensional
Laplace problem using the integral formulation. The addition of a rigid body term, the fun-
damental solution can shift the original degenerate scale to a new degenerate scale by a factor
e~°. The torsion rigidities are obtained and compared with analytical solutions. Numerical ex-
amples including elliptical, square, triangular bars and circular bar with keyway under torsion,
were demonstrated to show the failure of conventional BEM in case of the degenerate scale. Af-
ter employing the three regularization techniques, the accuracy of the proposed approaches is

achieved.

2-1 Introduction

During the last three decades, boundary element method (BEM) has been recognized as an accept-
able tool for engineering analysis [8, 61]. However, there still exists some pitfalls imbedded in the
BEM, e.g., rank-deficiency problems. The well-known one is the fictitious (irregular) frequency in

the exterior acoustics. Burton and Miller [11] solved the problem by combining singular and hy-

persingular equations with an imaginary constant. GHeh. [45] extended the Burton and Miller



method to filter out the spurious eigenvalues in the multiply-connected eigenproblem. Schenck
[122] proposed a Combined Helmholtz Interior integral Equation Formulation (CHIEF) method,
which is easy to implement by applying the integral equation on a number of points located out-
side the domain of interest. It is efficient to overcome the problem of nonunigque solutions in case
of fictitious frequency, but it still has some drawbacks since the chosen point may fail. How to
determine the number of points and how to choose their positions were discussed gt @hen

[15]. In a similar way for the interior eigenproblem, the CHEEF technique [14] instead of the
CHIEF concept was applied to filter out spurious eigenvalues successfully by adding constraints
from the points outside the domain in the multiple reciprocity BEM [48], real-part BEM [100]
and imaginary-part BEM [39]. Rank-deficiency problems also occur when BEM is applied to deal
with crack or corner problems. Dual formulation in conjunction with the hypersingular equation

has recieved attention in the last decade. A review article can be found in [34].

In the BEM implementation, the rigid body motion or so called constant potential test is
always employed to examine the singular matrices of strongly singular kernels and hypersingular
kernels for the problems without degenerate boundaries. étu#t. [107] termed it a simple
solution. Based on this concept, diagonal terms of a singular influence matrix can be easily de-
termined. Singular matrix occurs physically and mathematically in the sense that the nonunique
solution for the singular matrix implies an arbitrary rigid body term for the interior Neumann
(traction) problem. However, the influence matrix of the weakly singular kernel may be singular
for the Dirichlet problem [53] when the geometry is special. The nonunique solution is not physi-
cally realizable but results from the zero singular value in the influence matrix by using the BEM.
From the point of view of linear algebra, the problem also originates from the rank deficiency in
the influence matrices. For example, the nonunique solution of a circle with a unit radius has been
noted by Petrosky [118] and by Jaswon and Symm [84]. The special geometry which results in a
nonunique solution for a potential problem is called “degenerate scale”. The term “scale” stems
from the fact that the numerical instability of a unit circle of radius 1 m (1 cm) disappears if the
radius of 100 cm (0.01 m) is used in the BEM implementation. Christiansen [54, 55] termed it a
critical value (C.V.) since it is mathematically realizable. In real implementation, we need to avoid

the number one for the circular radius using the normalized scale. The numerical difficulties due
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to nonuniqueness of solutions have been solved by using the necessary and sufficient boundary
integral equation (NSBIE) [71, 73, 74, 72] and boundary contour method [143]. Also, the degen-
erate scale of multiply-connected problems was discussed for the Laplace equation by Tomlinson
et al. [128]. The nonunique solution for the multiply-connected biharmonic problems was also
studied by Mitra and Das [111]. Chext al. [46] studied the degenerate scale for the simply-
connected and multiply-connected problems by using the degenerate kernels and circulants in a
discrete system for circular and annular cases. Mathematically speaking, the singularity pattern
distributed along a ring boundary resulting in a null-field solution introduces a degenerate scale.
This concept was also extended to study the spurious eigenvalues for annular cavities ley Chen
al. [45]. The similar application to the two-dimensional elasticity was addressed in [41]. A rig-
orous study was proposed mathematically by Kuhn [99] and Constanda [57, 59] for the occurring
mechanism of the degenerate scale. SVD technique has been used to detect the nonunique solu-
tion in case of degenerate scale [55]. Three regularization techniques will be employed to avoid
the zero singular value. One alternative to treat the problem is to superimpose a rigid body term
in the fundamental solution for the BEM formulation. Although the degenerate scale problem can
be circumvented for the special geometry, the degenerate scale will be proved to move to another
size. Another alternative of hypersingular formulation is employed to shift the zero eigenvalue in
paying the price of determining the Hadamard principal value. By adopting the CHEEF concept
for obtaining an independent constraint, we can also deal with the degenerate scale problems free

of hypersingularity.

In this thesis, we will focus on the analytical investigation for the phenomenon of degener-
ate scales in the BEM for torsion problems in continuous and discrete systems. The degenerate
scale for the elliptical bar under torsion will be derived analytically in a continuous system by
using the elliptical coordinate. Circular domain is a special case for check. The degenerate kernel
and circulant are employed to derive the degenerate scale in the continuous and discrete systems,
respectively. Any simply-connected problem will be proven to have a degenerate scale. Also,
the rigid body terme will be proved to move the original degenerate scale to the new degenerate
scale by a factor of—“. In the discrete system, the Fredholm alternative theorem in conjunction

with SVD updating document will be employed to find the degenerate scale and the correspond-
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ing spurious mode. The relation between the spurious mode and unitary vector in SVD will be
constructed. Also, we will propose three alternatives, method of adding a rigid body mode, hyper-
singular formulation and CHEEF technique, to overcome the nonunique solution in the numerical
implementation. Method of adding a rigid body mode in the fundamental solution can shift the
zero singular value in the conventional BEM. Instead of using the conventional BEM, the second
equation in the dual BEM, i.e., hypersingular formulation, can avoid the zero singular value. By
using the CHEEF technique, the addition of a constraint by collocating the points outside the do-
main can promote the rank of the singular matrix. The optimum number and appropriate positions
for the collocating points will be addressed. Numerical examples, torsion problems of elliptical,
square, triangular bars and circular bar with keyway, will be demonstrated to see the numeri-
cal instability for the degenerate scale problems. The treament for the suppression of numerical

instability will be done.

2-2 Dual boundary integral formulation and dual BEM for torsion problems

The torsion problem of a bar with an arbitrary cross section in Fig.2-1 can be formulated by the

Poisson equation as follows [23, 120]:
Viut (a1, 22) = =2, (z1,12) € D, (2-1)

whereu* is the torsion (Prandtl) functioriy? is the Laplacian operator ard is the domain. The
boundary condition is

U*(.Tl,l'g) = 07 (1'1,332) S Bv (2_2)

whereB is the boundary. Since Eq.(2-1) contains the body source term which results in a domain

integral by using the BEM, the problem can be reformulated to
Viu(zy,z2) =0, (z1,29) € D, (2-3)

and the boundary condition is changed to

(2} + 23)

5 ; (21,22) € B, (2-4)

u(ry, xa) =
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where the torsion functiom™ can be obtained froma by superimposingi, © = v* + @ and
(a: +CIJ2)

This new model for the torsion problem using Eq.(2-3) is the Laplace equation subject to the
Dirichlet data of Eq.(2-4), which is very easy to implement using the DBEM, e.g., the BEPO2D
program can be used in this study, [31]. The torque, can then be determined by

M, = //(9017'23 - $27'13) dx; dxs, (2'5)

wherer,3 andr 3 are the shearing stresses determinedhy = —/<;G and713 = mG oG

is the shear modulus anddenotes the twist angle per unit length.

By employing the Green’s second identity and Eq.(2-1), the area integral in Eqg. (2-5) can be

transformed into a boundary integral and a domain integral as follows:

M, = // T1T23 — $27'13 d$1 dxy
= —r(@G // T v 8x2> dxy dxy
= —kG //(Vﬂ -Vu*) dxy dzy
D
= —rG // V - (aVu*) dzy dzy + kG // aV2u* dxy dxs
D D

— kG //(x% + 23) dzy dzs. (2-6)
D

= —kG

The induced area integral of the second term on the right hand side of the equal sign in Eq.(2-6)

can be reformulated into a boundary integral again by using the Gauss theorem as follows:

—mG//(m%—i—x%) drydry = _RG //V2 (2] + 23)?} dy doy
D

—kG [ O{(x? + 23)?}
" % ] (2-7)

B
The torsion problem can be simulated by using the mathematical model of the Laplace equation as

shown in EQ.(2-3). Now, we will consider the boundary integral formulation for numerical anal-

ysis. Using the Green'’s identity, the first equation of the dual boundary regular integral equations
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for the domain point: can be derived as follows:

27Tu(x):/BT(s,x)u(s) dB(S)_/BU(S’I)a;S) dB(s), (2-8)

where
U(s,z) = In(r), (2-9)
T(s,z) = a(g(;,x)’ (2-10)

in which r is the distance between the field poinand the source point, andn, is the nor-
mal vector for the boundary point After taking the normal derivative of Eq.(2-8), the second

equation of the dual boundary regular integral equations for the domainapoant be derived:

QWag?gf).:/BM(s,:U)u(S)dB(S)—/BL(S’x)agij)dB@)’ 1)

where
Ls,2) = aUa(;x)’ (2-12)
Mo = G (2-13)

in which n, is the normal vector for the field point Egs.(2-8) and (2-11) are coined the dual
boundary regular integral equations for the domain poeintThe explicit forms of the kernel
functions can be found in [31]. By tracing the field pointo the boundary, the dual boundary

singular integral equations for the boundary pairtan be derived:

mu(x) :C.P.V/BT(S,x)u(S)dB(S)—R.P.V/BU(S,x)ag—qij)dB(s), (2-14)
wagg) :H.P.V/BM(S,JC)U(S)dB(s)—C.P.V/BL(S,J:)agE)dB(sL (2-15)

whereR.P.V., C.P.V. and H.P.V. denote the Riemann principal value, Cauchy principal value
and Hadamard or Mangler principal value, respectively. After discretizing the boundaB/Nnto

boundary elements, Egs.(2-14) and (2-15) reduce to
[Ulanxen {thansy = [Tlenxen {ubons » (2-16)

[Llansan {thonsi = [M]ansen {ubon e s (2-17)
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where[U], [T], [L] and[M] are the four influence matrices which can be found in [34], and

{t} are the boundary data for the primary and the secondary boundary variables, respectively.

To determine the torsion rigidity using Eq.(2-6), the following boundary integral can be

integrated numerically as follows:

8u _Ou _ou _ ., 0u ou

Where(g—g)j is the normal derivative of for the j'* boundary element, is the length of thg'”

boundary element and another boundary integral in Eq.(2-7) can be discretized as follows:

(9{(x1 + x3)?
f o bap -4 Z (2-19)

B

2-3 Proof of the existence for the degenerate scale of the two-dimensional

Laplace problem using the integral formulation

Theorem 1: Existence theorem
[ Proof] :
For any two-dimensional Laplace problem with a simply-connected domain, there exists a degen-

erate scale when we solve the problem by using the boundary integral formulation or BEM.

For two-dimensional potential problems, there exists a unique solutiap fey satisfying

u(z) = /BU(S,x)zbl(s) dB(s), © € B, (2-20)

whereB is the normal boundary with the enclosing domain For simplicity, we can assume a
constant potential field since it is a “simple solution” for the Laplace equation. Eq.(2-20) reduces

to
1:/ U(s,2) n(s) dB(s), = € B. (2-21)
B

When the degenerate scdbg occurs, the nonunique solution of Eq.(2-21) implies that
0= [ Usa)unls) dB(s), = € B (2-22)
Bq
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has a nontrivial solution fo (s), whereB, is the boundary of degenerate scale using the funda-
mental solutior/ (s, z) = In(r). By expressing the boundary contour in termsf0f,, z2) = 0,

we have a new closed boundary curve

T1 T2

f— =) =0, (2-23)

whered is the expansion ratio. The two boundary curv@sand B, are shown in Fig.2-2(a). By
mapping the nondegenerate (normal) boundary to the degenerate boundary, we have
(x1,22) = (x1d,22d) = (21, 22) d,

dB(s) = dB(sd) = dB(s)d,

U(s,z) = U(sd,xd) =U(s,z) + In(d),

hi(s) = (s d) = (s).

According to mapping properties, the homogeneous Eg.(2-22) yields

0= / U(sd,rd) ¢ (sd) dB(sd). (2-24)
Bg
In order to have a nontrivial solution for Eq.(2-24), we have

0 = /B d (U(s,z) + In(d)) ¥ (s) dB(s)

(2-25)
=d+d ln(d)/9¢1(s) dB(s) =d+d In(d) T,
after using Eq.(2-21) and defining
I /B n(s)dB(s). (2-26)
According to Eq.(2-25), the degenerate scale occurs when the expansiod,rasitbsfies
d=eT. (2-27)

For determing the degenerate scale systematically from one trial on a normal scale, we provided

a flowchart shown in Fig.2-2(b).

Here, a simple example of a circle with a radius,is demonstrated to verify Eq.(2-27).
According to Eq.(2-21), we have

1

T 274 In(a) (2-28)

¥1(s)
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By using Eq.(2-26), we can determine

1 1
b= /B 2 ma In(a) dB(s) = In(a) (2-29)

Substituting Eq.(2-29) to Eq.(2-27), the expansion ratio is

1
d=e M@= (2-30)

a

After expanding the radius by multiplying the expansion rati(%,, the degenerate scale of radius
with a unit length is proved. The numerical results for the circle are shown to match well with the

analytical solutions in the second column of Table 2-1.

2-4 Proof of the expansion ratio ofe™¢ for the new degenerate scale after

adding a rigid body term c in the fundamental solution

Theorem 2:

The boundary ofy(x1,z2) = 0, which is a degenerate scale using the fundamental solution
(U(s,z) = In(r)) is changed to a new degenerate scalg(gf., 2) = 0 using the modified
fundamental solutioU* (s, x) = In(r) + ¢).

[ Proof] :

If the degenerate scale, (¢(x1, z2) = 0) occurs, the fundamental solutidf(s, z) can be modi-
fied toU (s, x) + cto avoid the singular case. In other words, there is a unique soltio) for

the following equation,
1= / [U(s,z) + c]¢r(s) dB(s). (2-31)
By

In a similar way, we expand the normal boundaty (U(s,z) = In(r) + ¢) in EQ.(2-31) to the
“new degenerate scalel3;-, by using the modified fundamental solution as shown in Fig.2-2(a).

The homogeneous Eq.(2-31) reduces to
0= / [U(sd*,zd") + c| ¢ (sd*)dB(sd"). (2-32)
Bg+

In the new degenerate scalgy:, for the case of modified fundamental soluti@n(s, z) = In(r)+

¢), it means that Eqg.(2-32) has a nontrivial solution. By using mapping propefti&s,d*) =
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d*dB(s) andU(sd*,xzd*) = U(s,z) + In d*, EqQ. (2-32) reduces to

0=d' [ [(Uls.2) + (@) + un(s)Es)
Ba (2-33)
= d"In(d") ; P1(s)dB(s) + cd* ; U1 (s)dB(s) + d*/B U(s,z)1(s)dB(s).

Since [, U(s,x)1(s)dB(s) = 0 inthe original degenerate scale, Eq. (2-33) simplifies to
By

0=d"In(d") [ Y1(s)dB(s)+cd" | 1(s)dB(s)
ba ba (2-34)
= (In(d*) + ¢) ; 1(8)dB(s).

The expansion ratial*, satisfying
d'=e"° (2-35)
results in a new degenerate scale in Eq.(2-35). To demonstrate the accuracy of Eq.(2-35), a special

case of circular bar will be disscussed in the following section in detail.

2-5 Mathematical analysis of the degenerate scale for an elliptical bar under

torsion

For an elliptical bar under torsion as shown in Fig.2-3(a), the governing equation is also
V2U(.CU1, l’g) - 07 (mla 332) € D. (2-36)

To study the degenerate scale for an elliptical bar [104], we consider an infinite domain and use

the elliptic coordinaté andn defined by
z=kcosh(, (=&+m. (2-37)
wherez is the complex planér; + iz,), k is a constant and
x1 = kcosh&cosn, xo=ksinhsinn. (2-38)

The coordinate is a constant and is equal &g on the ellipse of the semiaxéscosh &, and

k sinh & as shown in Fig.2-3(b). If the semiaxes are givena®ndj, k and{, can be determined
by

k=+/a2— 3, & =tanh™! (%) . (2-39)
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We assume; andu,, for the interior and exterior potentials as shown in Fig.2-3(b), respectively,

ui(§,m) = o, (2-40)
ue(§777) = 02+C3€a (2_41)

where the subscripts™and “e” denote the interior or exterior point separated by the elliptical

boundary¢ = &, respectively. Wheg approaches infinity, we have the asymptotic form

rzk%ﬂkm%dzgé, (2-42)
and
¢ ~In(r) — ln(g). (2-43)

When¢ approaches infinity, the exterior potential approadhesand the coefficient, must be
chosen as; In(%). The potential in the exterior domain is

k

ue<£7 77) = C3(£ + hl(i)) (2_44)

On the other hand, whehapproacheg, on the elliptical boundary, we have

wlen) = cléo+m(b))

— c3(tanh™* (é) + %111(0[2 — %) —In(2)). (2-45)
(0
after using Eq.(2-39). If we set
e’ —1
tanh(z) = (6% n 1) =X, (2-46)
we have
I = lln (—1 * X) = tanh ™' y. (2-47)
2 1—x

By settingy to be(£), we have

tmm*(é)zlm(a+ﬁ). (2-48)
Q 2 a—(

The exterior potential in Eq.(2-45) becomes

ue(gan) = 63(% In (Z i_ g) + % ID(O_/2 - 52) - 1H(2))
= c¢3ln (a—;—ﬁ) ) (2-49)
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For the continuity of displacement across the boundary, the displacement by approaching from

the exterior domain must equal to the potential by approaching from the interior domain. We have

6 =1n (O‘;5> e, (2-50)

and the potential can be written as
wl(6,n) = csln (O‘ "; ﬁ) , (2-51)
wlen) = ol n(? - ) - ) (2:52

The degenerate scale occurs for the interior null field when the relationship betwaseds is

a+06 =2, i.e.,c; = 0. Insuch a case, the strength of the singularity along the elliptical boundary
can not be determined in BEM implementation. This is the reason why a degenerate scale occurs.
The fields foru; andu, are shown in Fig.2-3(c) for contour and 3-D plots. It is found that the
null field is obtained in the ellipse. From Egs.(2-38) and (2-39), the tangent weatat normal

vectorn in Fig.2-3(d) can be derived as follows:
t = (—kcosh & sing, ksinh & cosn), (2-53)
n = (ksinh &y cosn, kcosh & sinn). (2-54)

The exact solution for the normal flux on the boundary is

ou(&o,n) () = u(&o + Ao, m) — u(&o, )
i (0, m; S0 + Ao, 1)
) e (2-55)
 V/Bcos?n + a2sin?y

wherer(&o, n; &0 + A&y, n) is the distance between the two poitigs, ) and (§, + Ao, n) in
the elliptical coordinate, as shown in Fig.3-3(d). Wheapproacheg, the elliptical boundary
becomes a circle and the degenerate scale is found t0-be3 = 1. The result is the same in

comparison with the degenerate scale in [84, 118]. Eq.(2-55) reduceéitp= 1 for the circle.

2-6 Special case - circular bar with radiusR

Whena equals tg3 in the elliptical case, it becomes a circular bar. The null field of Fig.2-3(c) is

simplified to Fig.2-4 where*({, n) = In r can be obtained from Eq.(2-49) by setting= 3 = r.
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The degenerate scale occurs at the radius of one. In thisg@ages /() = 1. For the discrete
system o2V boundary elements, the influence matri{©@f is a symmetric circulant which can

be decomposed by using SVD technique as
U] = [@][=][¥]", (2-56)
where the singular values in tifg] matrix are

B { 2r Rln(R), n=0
o = (2-57)

—wl—f}', n=+1,£2---,£(N —1),N,

After adding a rigid body tern;, in the fundamental solution, the influence matti is modified

to
U] = [U] + ¢ {on H{un }T, (2-58)
where uniform mesh results in
()
1
() =ty=—=d ity (2-59)
1
1

\ 7 2Nx1
We can easily obtain
" =2cNIl=2mr"c (2-60)

In order to demonstrate that the rigid body terwan shift the degenerate scdte= 1 to another

placeR = r*, the minimum singular value of the influence matfiiX | becomes zero,

2nr*In(r*) + ¢ =0. (2-61)
Using Eq. (2-60), we have
2" In (r*) + c2nr* =0, (2-62)
Eq. (2-62) yields
r*=e". (2-63)



Eq.(2-35) is obtained again using the BEM. In the same way, we can prove EQq.(2-35) in the
continuous system. First, we define a boundary integral operatehich maps one boundary

density functiorp(s) to another boundary density functigfi) as
U(p(s)) = Aq(x), (2-64)
where the boundary integral operatat,is defined as
Uw(s) = [ Uls.o)its) dB(s), = € B (2:65)
In this case, the associated eigenfunction for the zero eigenvalye)is= 1, i.e..
UCH(s)) = Mb(z) = /B U(s, 2)ib(s) dB(s) = 0, z € B. (2-66)

When the degenerate scale occurs, the eigenvaluis, zero. By using the degenerate kernel

function for the fundamental solution added by a rigid body tef{81], we have

U(s,z) = U'(R,0;p,9) (2-67)
= InR— Z %(}%)m cos(m(f — ¢)) + ¢, (2-68)

wherezx = (p, ¢) ands = (R, #). For the circular case of radius one, the zero singular value
results in a degenerate scale. After adding a rigid body terthe minimum singular value shifts
to

oy =2nRIn(R)+ 27 Re. (2-69)

We can obtain the radius with a unit length (free of rigid body term) is shiftedt¢after adding
a rigid body ternx) for keeping the zero singular value, see Fig.2-5. In order to demonstrate that
the rigid body terme can shift the degenerate scéle = p = 1) to another placéR = r*). Eq.
(2-69) can be rewritten as

2 r* In(r*) 4+ 277" ¢ =0, (2-70)

Eq. (2-70) yields
r*=e ¢ (2-71)
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2-7 Detection of degenerate scales and determination of spurious modes by

using the SVD updating documents and the Fredholm alternative theorem

Fredholm alternative theorem:
The linear algebraic equatidi] {u} = {b} has a unique solution if and only if the only contin-

uous solution to the homogeneous equation

[K]{u} = {0} (2-72)

is {u} = {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

[K]"{¢} = {0} (2-73)

has a nontrivial solutiod¢}, where[K]# is the transpose conjugate matrix[éf] and{b} must
satisfy the constrair{{b}/{¢} = 0). If the matrix[K] is real, the transpose conjugate of a matrix

is equal to its transpose only [62], i.€k]? = [K]T . By using the UT formulation, we have

U] {t} = [1] {u} = {b}. (2-74)

According to the Fredholm alternative theorem, Eq. (2-74) has at least one solutigh fbthe

homogeneous adjoint equation

U]" {én} = {0}, (2-75)
has a nontrivial solutiof, }, in which the constraint{b}7{¢,} = 0) must be satisfied. By
substitutingy = [T]{u} in Eq. (2-74) into{b}"{¢,} = 0, we obtain

{u}"[T)" {41} = 0. (2-76)

Since{u} is an arbitrary vector for the Dirichlet problem, we have

(71" {&r} = {0}, (2-77)

where{¢, } is the spurious mode. Combining Eq. (2-75) and Eq. (2-77) together, we have
o1t T

- {or} = {0} or {&}" | U] 117 | = {0}, (2-78)
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Eq.(2-78) indicates that the two matrices have the same spurious{mppeorresponding to the
same zero singular value when a degenerate scale occurs. The former one in Eq.(2-78) is a form
of updating term and the latter one is a form of updating document. By using the SVD technique
for the[U]” and[T]" matrices, we have

U1F = Wy (S0 [@0],

U]" = [¥o] [S0] [@0] .79

(11" = [91] [£] [@1]"
where{¢, } is imbedded in both the matricg,;] and[® ], with the corresponding zero singular
value in the matrice§Y.;;] and[Xr|, respectively. Sinc€s, } is one of the left unitary vector of

[®;] matrix with respect to the zero singular value, we have

(U7 {¢1} = 0 {¢n}, (2-80)
where{¢,} and{,} are the pair of nontrivial spurious modes which satisfy

(UK} = 0{o1}. (2-81)

The{«, } in EQ.(2-81) for the discrete system anth) in Eq.(2-55) for the continuous system will
be examined in the following numerical examples. To sum up, rigid body ribde - -- 1, 1}7and

spurious modd ), } satisfy

1 0
1 0
T4 8 p =g s (2-82)
1 0
\ 1 / \ 0 J
o)
0
714 & ¢ =W, (2-83)
0
\ 0 J

respectively.
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2-8 Three regularization techniques to deal with degenerate scale problems

in BEM

2-8-1 Method of adding a rigid body mode

Since thgU] matrix is singular in case of the degenerate scale, the modified fundamental solution

can be added by a rigid body texmn
U(s,x) =U(s,x) + c. (2-84)
The influence matrixU| is modified to[U*], where the component form for the element is
U =Uj+cly. (i, j=1,--- 2N) (2-85)

The zero singular value if/] moves to a nonzero value f@/*|. To demonstrate the effective-
ness, the minimum singular value after the modified fundamental solution will be shown in the

numerical examples.

2-8-2 Hypersingular formulation

Instead of using the Eq.(2-16) in the conventional BEM, the second equation of Eq.(2-17) in the
dual BEM is used. To demonstrate the idea, the singular value foftmaatrix will be shown to

be nonzero no matter what the expansion ratio is in the following numerical examples.

2-8-3 CHEEF method

Since thgU] matrix is singular, the rank is deficient. In order to promote the rank, the independent
constraint is required. To resort to the null field equation by collocating the point outside the
domain, we have

<w > {t} =<v> {u}, (2-86)
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where< w > and< v > are the influence row vectors by collocating the exterior point in the

null-field equation. By combining Egs.(2-16) with (2-86), we have

U Ton«
[Ulanxan { ) } _ [T)onx2n { y } . (2-87)
<w >1><2N 2Nx1 <V >1><2N 2N x1

According to the Eq.(2-87), we can obtain the reasonable solution by using either the least squares
method or the SVD technique.
2-9 Numerical examples

In this section, four cases including elliptical, square, triangular bars and circular bar with keyway

are considered.

2-9-1 Elliptical bar

For the elliptical bar with axea m andg m (a = 33) under torsion, the analytical solution for

the conjugate warping function is [120]

o?(2(% + a7 — x3) + B (—a} + 23)

u(ry,2) = 2 + 37 , (z1,20) € D, (2-88)
and the boundary flux is
2 2\(__ 2.2 2,.2
%:_<Oé 6)( ﬁxl_FOéxZ). (2'89)
on (a2 + 32)\/B5% + ala?
The torsion rigidity,7;, is
_ o mals (2-90)
T a2 +52'

The nontrivial boundary modgy; } obtained in Eq.(2-81) in the BEM and the analytical solution

Y1 (n) using Eq.(2-55) matched well in Fig.2-6. Good agreement for the numerical data of Eq.(2-
78) and the exact solution for the spurious mode is obtained in Fig.2-6. Table 2-2 shows the
torsional rigidity obtained by using different approaches. The conventional BEM can work well
for the normal case. However, the numerical instability results in a deteriorated BEM solution

when the degenerate scate+ 5 = 2) occurs in the shadow area of Table 2-2. Good agreement
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was obtained in comparison with the analytical solutions after using the regularization techniques

as shown in Table 2-2.

By using the conventional BEM, the zero singular value occurs in case of degenerate scale.
After adding the rigid body termy;, in the fundamental solution, the zero singular value moves
to another place by a facter instead of the original one as shown in Fig.2-7(a). To investigate
how seriously the rank deficiency behaves, we plot the second minimum singular value versus the
expansion ratio in Fig.2-7(b). It indicates that the rank is deficient by one only. This supports
us that only one CHEEF point is sufficient. The zero singular value disappears in Fig.2-7(c) for
the [L] matrix in the hypersingular formulation. In order to avoid hypersingularity, the CHEEF
method by collocating one point outside the domain can promote the rank as shown in Fig.2-7(d).
Since no zero solution outside the domain also shown in Fig.2-3(c), the selected CHEEF points

are always valid.

2-9-2 Square bar

For the square bar with arga? m? under torsion, the analytical solution for the conjugate warp-

ing function is [120]

1 3202 = (—1)"\, cosh(\,z2) cos(A,z
ulwr,z2) = @+ 5 (2} — o) - (=1) (An2) cos(Anz1)

, (z1,22) € D, (2-91)

m i (2n + 1)3 cosh(A,a)
where
M=2n+1)—, n=01,2. (2-92)
2a
The boundary flux is
ou  Ou ou
a_ - 5 Nz a_ Mz ) Ba 2-93
on 8:B1n ot ax2” (21, 22) € ( )
where
aa_u — 3232 o0 (_1)n+;>\n cols};()\nlxlg))\sin()\nxl)’ (2-94)
T m i (2n + 1)3 cosh(\,a)
ou 32a% A (—1)" A, sinh(\,22) cos( A, 21)
i — — 2-95
019 TS e (2n + 1)3 cosh(\,a) ’ (2-95)
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andn,, andn,, are the components of the normal vector on the boundary.

The torsional rigidity,l;., of a square bar is
T, = 16k,Ga* (2-96)

where
1 192 tanh(\,a)
= —(1 — ==
I (2n + 1)

Table 2-2 shows the torsional rigidity by using different approaches. In the same way, the conven-

). (2-97)

tional BEM (UT formulation) can not obtain the acceptable results for the case of the degenerate
scale as shown in Table 2-2. Fig.2-8 shows the spurious modgs, pfand{¢, }. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular
value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-
tal solution, the zero singular value moves to another degenerate scale instead of original one as
shown in Fig.2-9(a). To investigate how seriously the rank deficiency behaves, we plot the second
minimum singular value versus the expansion ratio in Fig.2-9(b). It indicates that rank is defi-
cient by one only. This supports us that only one CHEEF point is required. By employing the
hypersingular equation in the dual BEM, it is found that the singular valué|ahatrix for any

scale is nonzero as shown in Fig.2-9(c). In order to avoid hypersingularity, the CHEEF concept

by collocating one point outside the domain can promote the rank as shown in Fig.2-9(d).

2-9-3 Triangular bar

For the equilateral triangular bar with the height: under torsion, the analytical solution for the

conjugate warping function is [120]

1
u(ry, 29) = —ﬁ(Bxga:f — 5 + has — hat + h*xy), (21,29) € D, (2-98)

and the boundary flux is

ou ou ou
o = anm T og, e (#172) €8, (2-99)
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where

ou 1
67 = —%(Gxgxl — 2h1’1), (2'100)
1
1
57“ = —ﬁ(&’v% — 325 + 2hxy + h?), (2-101)
2
The torsion rigidity,7}, is
T, — GZ—Sh“. (2-102)

Table 2-3 shows the torsional rigidity by using different approaches. In the same way, the con-
ventional BEM (UT formulation) can not obtain the acceptable results for the case of degenerate
scale as shown in Table 2-3. Fig.2-10 shows the spurious modes paind{¢ }. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular
value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-
tal solution, the zero singular value moves to another degenerate scale instead of original one
as shown in Fig.2-11(a). To investigate how seriously the rank deficiency behaves, we plot the
second minimum singular value versus the expansion ratio in Fig.2-11(b). It indicates that rank
is deficient by one only. It is found that the singular value bf matrix in the hypersingular
equation for any scale is nonzero as shown in Fig.2-11(c). In order to avoid hypersingularity, the
CHEEF method by collocating one point outside the domain can promote the rank as shown in
Fig.2-11(d).

2-9-4 Circular bar with keyway

For the circular bar with keyway under torsion, the analytical solution for the conjugate warping

function is [120]
2
1
"+ L) wm e, (2-103)

— 1 -
u(wy, Ta) = azq( i

and the boundary flux is

ou  JOu ou
= — B 2-104
an axl nflfl + 8x2n$27 (‘1.17:62) E ) ( O )
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where

ou 2ab*z?
- = -7 2-105
0, (2% 4 a3)?’ ( )
ou 2abx119
— = . 2-106
Oy (22 4 23)? ( )
The torsion rigidity,T,., is
T, = 2Ga’k,, (2-107)
where
1 1,0 4.b 1,b
ky = ﬁ(sinlky +8sin 2y + 127) — 5(5)2(sin 27 + 27v) + g(a)?’(sin v) + 1(5)47 (2-108)
in which
b
2cosy = o (2-109)

Table 2-3 shows the torsional rigidity by using different approaches. In the same way, the con-
ventional BEM (UT formulation) can not obtain the acceptable results for the case of degenerate
scale as shown in Table 2-3. Fig.2-12 shows the spurious modes paind{v }. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular
value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-
tal solution, the zero singular value moves to another degenerate scale instead of original one
as shown in Fig.2-13(a). To investigate how seriously the rank deficiency behaves, we plot the
second minimum singular value versus the expansion ratio in Fig.2-13(b). It indicates that rank is
deficient by one only. By employing the hypersingular equation in the dual BEM, it is found that
the singular value dfZ] matrix for any scale is nonzero as shown in Fig.2-13(c). In order to avoid
hypersingularity, the CHEEF method by collocating one point outside the domain can promote

the rank as shown in Fig.2-13(d).

2-10 Conclusions

In this chapter, the numerical instability for torsion problems by using the conventional BEM was

addressed. Instead of direct searching for the degenerate scale by trial and error, a more efficient

30



technique is proposed to directly obtain the singular case since only one normal scale needs to be
computed. The degenerate scale for the torsion bar with an elliptical section was derived analyti-
cally in the continuous system using the elliptical coordinate. For the discrete system, the source
of numerical instability is found to be the spurious modes (left and right unitary vectors in SVD
with respect to the zero singular value) which were obtained by using the Fredholm alternative
theorem and SVD updating document. To deal with the numerical instability due to the degen-
erate scale, three approaches, method of adding a rigid body mode, hypersingular formulation
and CHEEF method, were successfully applied to remove the zero singular value. Good agree-
ment between the BEM results and the analytical solutions were obtained if the regularization
techniques are used. Numerical examples, including a circular bar, an elliptical bar, a square bar,

triangular bar and a circular bar with keyway were demonstrated to check the validity.
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Chapter 3

Eigenanalysis for membranes with stringers using BEM in
conjunction with SVD technique

Summary

It is well known that either the multi-domain BEM or the dual BEM can solve boundary value
problems with degenerate boundaries. In this chapter, the eigensolutions for membranes with
stringers are obtained in a single domain by using the conventional BEM in conjunction with
the SVD technique. By adopting the SVD technique for rank revealing, the nontrivial boundary
mode can be detected by the successive zero singular values which are not due to the degeneracy
of degenerate boundary. The boundary modes are obtained according to the right unitary vectors
with respect to the zero singular values in the SVD. Three examples, a single-edge stringer, a
double-edge stringer and a central stringer in a circular membrane, are considered. The results of
the present method, are compared with those of the multi-domain BEM, the dual BEM, the DtN
method, the FEM (ABAQUS) and analytical solutions if available. Good agreement is obtained.

The goal to deal with the eigenproblem in a single domain without hypersingularity is achieved.

3-1 Introduction

A large amount of boundary value problems (BVPs) were solved efficiently by using the bound-
ary element method (BEM) since Rizzo [121] discretized the integral equations for elastostatics
in 1967. Over twenty years, the main applications were limited in BVPs without degenerate
boundaries. Since the degenerate boundary results in rank deficiency for the conventional BEM,
the multi-domain BEM was utilized to solve the nonunique solution by introducing an artificial
boundary in the last two decadesg, cutoff wall [102], thin barrier [106] and crack problems [7].
However, the eigenproblem with a degenerate boundary was not solved by using the multi-domain
BEM to the authors’ best knowledge. The drawback of the multi-domain approach is obvious in

that the artificial boundary is arbitrary, and thus not qualified as an automatic scheme. In addition,
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a larger system of equations is required since the degrees of freedoms on the interface are put
into the system. For half plane or infinite problem, the artificial boundary is not finite. The three
shortcomings encourage researchers to deal with the degenerate boundary problem by using the
dual BEM with hypersingularity in the last decadegy.,Hong and Chen [35, 76], Gray [66, 67]

and Kirkup [94, 95, 96] independently derived the hypersingular formulation for the degenerate
boundary problems. Aliabadi and his coworkers [1, 110, 119] have published many papers on its
applications to fracture mechanics. One can consult the review article by Chen and Hong [27]. We
may wonder is it possible to find the eigensolution in a single domain with a degenerate boundary

approach without using the hypersingular equation.

In this thesis, we will solve the membrane eigenproblems with stringers using the multi-
domain BEM and a new method. By employing only the conventional BEM instead of the dual
BEM, the eigenvalue will be detected in a single domain by finding the successive zero singular
values using the rank revealing technique of SVD. Three cases, a single-edge stringer, a double-
edge stringer and a central stringer, will be considered. Also, the FEM using ABAQUS, the DtN
method, the dual BEM and analytical solutions if available will be utilized in comparison with the

present solutions of both the multi-domain BEM and the new method.

3-2 Integral formulation and boundary element implementation for the mem-

brane eigenproblem with stringers

Consider a membrane eigenproblem as shown in Fig.3-1(a), (b) and (c), which has the following
governing equation:

V2u(z) + k*u(z) =0, = in D, (3-1)

where D is the domain of interest; is the domain pointy(x) is the displacement andis the

wave number. The boundary conditions are given as follows:

u(z) =0, x on By, (3-2)
du(x) =0, x on By, (3-3)
Ong,
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whereB; is the essential boundary with the specified homogeneous displaceBaasthe nat-

ural boundary with homogeneous normal flux in thedirection, andB;, and B, comprise the
whole boundary of the domaif. For the stringerB; can be composed of stringer (degener-
ate boundaryl’* andC~ as shown in Fig.3-1(a), (b) and (c). For the homogeneous boundary

conditions, we can determine the critical wave numbby using the BEM.

The first equation of the dual boundary integral equations for the domain point can be derived
from Green'’s third identity [43] :

2wu@ﬂ::/nT@gmﬁdeBﬁﬂ——/nU(&aﬁau@>d8@ﬂ,x € D, (3-4)
B B 8”5
whereU (z, s) is the fundamental solution which satisfies

V2U(z,s) + k*U(z,s) = 0(x —s), = € D, (3-5)

in which§(z — s) is the Dirac-delta function, arifi(s, x) is defined by

oU (s, x)
ons,

in which n is the outward directed normal at the boundary peinBy moving the field point:

T(s,z) =

(3-6)

in Eq.(3-4) to the boundary, the first dual boundary integral equation for the boundary point can

be obtained as follows:

wM@:GPV/

B

T(s,a:)u(s)dB(s)—R.P.V./U(s,x)au(s)dB(s), r € B, (37)

on
B s
whereC.P.V. is the Cauchy principal value anBl. P.V. is the Riemann principal value. The
boundary integral equation can be discretized by udingpnstant boundary elements 8r and

the resulting algebraic systei{” formulation: conventional BEM) can be obtained as

[T{u} = [U{t}, (3-8)

wheret = 2, [ ] denotes a square matrix with dimensisrby V, { } is a column vector for the

boundary data and the elements of the square matrices are, respectively,

Uj = R'P-V'/ U(sj, r;)dB(s;), (3-9)
B;
T, = —w@j+-012v1/‘zxsﬁxodB(%), (3-10)
B;j

whereB; denotes thg™ boundary element anl; is the Kronecker delta.
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3-3 Review of the multi-domain BEM and the dual BEM for the eigenprob-

lem with a degenerate boundary

3-3-1 Multi-domain BEM

Since the degenerate boundary@h andC~ as shown in Fig.3-2(a) produces double unknowns,
Eq.(3-8) can provide an additional equation by collocating the poiah C* or C~. Instead

of obtaining the independent equations by using the hypersingular formulation [43], the multi-
domain BEM is one alternative. By dividing the domain into two subdomains (index 1 and 2)

and using the conventional BEM for each subdomain, we have the two equations from Eq.(3-8)

as follows,
oy gy _ [ ooy ] e o1
71 1 ul - ULyl |’
| L A | M | Ure Usr | M/
and
T T2 u Uz Uz t2 312
T2 T2 uQ o U2 U2 t2 ’ ( )
| L A | M | Yre Ysr | M/

where the superscripts 1 and 2 are the labels of the subdomains and the subsuorgpfsde-
note the complementary and interface setsufandt¢, respectively. Since the unknown pairs of
{u}}, {u7}, {t;} and{t}} are introduced in the artificial boundary as shown in Fig.3-2(a), two

constraints of the continuity and equilibrium conditions are necessary,

{u} = {u?}, (3-13)
and
{ty} = {17} (3-14)
By assembling the Egs.(3-11) and (3-12) and using Egs.(3-13) and (3-14), we have
[ 1 1 i I 1 1 |
Ue Uy 0 [ T, T, O iy
Ul Ul 0 ‘ T T} O ‘
AR B A L I (3-15)
O _Ucf UCC t2 0 ch TCC u2
i 0 —U]?f UJ?C_ I 0 T]?f ch_
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By collecting the unknown variable$t}, {t}}, {t}, {u}} for the Dirichlet eigenproblem and
the known homogeneous boundary conditiong,} and{«?}, to the left and right hand sides of
the equal sign, respectively, Eq.(3-15) is reformulated to

( )

| Unio | — {0}, (3-16)

/

where{u!} = {u?} = 0 for the Dirichlet boundary condition are substituted and

uLouy, 0T
U Uy 0 Ty
0 U UL T;
0 —Uf U TF

[ Ump } = (3-17)

By plotting the determinant of the matri}/,, |, versusk, we can find the eigenvalue where the

determinant drops to a local minimum in the direct-searching scheme.

3-3-2 Dual BEM [43]

Instead of using the multi-domain BEM, the dual BEM is also one alternative for the degenerate-
boundary problem. By adding independent constraints, differential operator can be introduced.
This is the key idea of the dual BEM. After taking the normal derivative with respect to Eq.(3-4),

the second equation of the dual boundary integral equations for the domain point can be derived:

0 2UT) _ / M (s, z)u(s)dB(s) — / 205,02 ap(s), « € D, (3-18)
anx B B 87%5
where the two kernels are
L(s,x) = —8(]8(;‘;@’ (3-19)
_ PU(s,x)
M(S,.T) = W (3'20)



By moving the field point: in Eq.(3-18) to the boundary, the second one of dual boundary integral

equations for the boundary point can be obtained as follows:

ou(x)
T on,

ou(s)
ong

:H.p.v./BM(s,x)u(s)dB(s)—C.P.V./BL(S,;);) dB(s). © € B, (3-21)

whereH.P.V. is the Hadamard (Mangler) principal value. After boundary element descretization,

we have
[M]{u} = [L){t}, (3-22)
where
Lij = Wéij -+ CPV/ L(sj,xi)dB(sj), (3'23)
B
and
Mij = HPV/ M(sj,xi)dB(sj). (3'24)
B

For the membrane eigenproblem with stringers, the homogeneous Dirichlet boundary condition is
considered. After determining the influence coefficients and substituting the boundary conditions,

we can obtain the transcendental eigenequations as follows:
[U(k){t} = {0}, (3-25)

[L(Kk)I{t} = {0}, (3-26)

where{t} is the boundary mode fér= 2“, and the wave numbek, is embedded in each element
of the matrices[U] and[L]|. By employing the direct-searching scheme for the determinant of
[U] or [L], trivial data are obtained for the plot of determinant verBusnce the two matrices
are singular for any value @f. In other words, eithet/T" or LM method alone fails to solve the

eigenproblem.

By combining the dual equations on the degenerate boundary wietocates orC'* or
C~—, the nontrivial eigensolution exists when the determinant of the combined influence matrix is
zero by using the direct-searching method. Since either one of the two equaiibre, LM,
for the normal boundang as shown in Fig.3-1(a) can be selected, two alternative approaches,

UT + LM andLM + UT, are proposed for the combined influence matrices as follows:
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TheUT + LM method has the eigenequation

tis
(Kool § t;.. ¢ =10}
t:

Jo—

where
Ui

Kyt = | U,
L

Ui
Ui
L

Ui
Ui
L

sJs Sic+ Sic—

c+is ctic+ c+ic—

7:(ijjS ic+jc+ ic+jcf

(3-27)

, (3-28)

the subscriptsi,s andic+, denote the collocation points on tieandC'* boundaries, respectively,

and the subscriptgg and;j.+, denote the element ID on tltftandC* boundaries, respectively.

The LM + UT method has the eigenequation

tjs

(Kol S t., ¢ =10},
t<

Jo—

where
L

[KLU] - Lic+ Js
Ui

L

Lic+jc+

Ui

L

Lichjcf

Ui

isjs 1Sic+ isio—

c+jS c+jc+ c+jcf

(3-29)

(3-30)

By plotting the determinants 6] or [K ;] versusk, eigenvalues can be found by using the

direct-searching scheme.

3-4 Direct-searching scheme by using determinant and singular value in

BEM

3-4-1 Multi-domain BEM

The eigenvalué can be obtained by direct searching the determinant vésssisch that

det[UMD(k’)] = 0,
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where[Uyp(k)] is defined in Eq.(3-17). The numerical results will be elaborated on later. After
determining the eigenvalues, the boundary mode can be obtained by setting a normalized value to
be one in an element for the nontrivial vector. By substituing the eigenvalue and boundary mode

into Eq.(3-4), the interior mode can be obtained.

3-4-2. Dual BEM

In the same way, the eigenvalbieean be obtained from
d@t[KUL(k?)] =0 or d@t[KLU(]{?)] =0, (3'32)

where [Ky (k)] and [Ky (k)] are defined in Egs.(3-28) and (3-30), respectively. The interior

mode can be obtained in the same way as the multi-domain BEM does.

3-4-3 UT BEM+SVD

The aforementioned two methods, either the multi-domain BEM or the dual BEM is well known
for degenerate boundary problems in the literature. Here, we propose a new approach to deal with
the eigenproblem using tHé7" BEM and SVD. For the Dirichlet eigenproblem, the boundary
element mesh on the degenerate boundary was shown in Fig.3-2(b). The influenceuifadix

is rank deficient due to two sources, the degeneracy of stringers and the nontrivial mode for the
eigensolution. SincéV,; constant elements locate on the stringer, the makfix)] results in

N, zero singular valuegos; = o5--- = oy, = 0). The next(N, + 1)" zero singular value

on,+1 = 0 originates from the nontrivial eigensolution. To detect the eigenvalue$)the 1)

zero singular value versuscan be plotted to find the drop where the eigenvalue occurs.

Since the SVD technique is adopted for rank revealing, the decomposition is reviewed as
follow:

Given a matriX K], SVD can decompose into

[K<k)]]v1><P = [‘b]MxM[Z]MxP[\I’]gxpa (3-33)
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where[®] is a left unitary matrix constructed by the left singular vectdes; }, i = 1,2,... M),
and[X] is a diagonal matrix which has singular valueso,,--- ,0p_; andop allocated in a

diagonal line as

O'P « o e O
[X] = 0 - o , (3-34)
o -+ 0
L d MxP

in whichop > op_1--- > o, and[¥]# is the complex conjugate transpose of a right unitary
matrix constructed by the right singular vectéfs); }, i = 1,2,... P). As we can see in Eq.(3-

34), there exist at mog? nonzero singular values.

By employing the SVD technique to determine the eigenvalue, we can obtain the boundary
mode at the same time by extracting the right singular vefetgrin the right unitary matrix¥]

of SVD with respect to the near zero or zero singular value by using

[K|{:} = oi{ei} i1=1,2,3---P. (3-35)
If the ¢'" singular valueg,, is zero, in Eq.(3-35) we have

[KHtq} = 0{¢g} = {0}, ¢ < P. (3-36)

According to Eq.(3-36), the nontrivial boundary mode is found to be the right singular vector,
{14}, in the right unitary matrix. Therefore, the step to determine nontrivial boundary mode
in the multi-domain BEM and dual BEM is avoided by setting a reference value. Héfre,
BEM+SVD employed the influendé’] for [K] in Eq.(3-8) for the Dirichlet eigenproblem.

3-5 Numerical examples

We next consider the three problems illustrated in Fig.3-1(a)-(c), which have been solved by

Givoli and Vigdergauz [68] and Chest al. [43]. A circular membrane is given with a radius
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R. For simplicity, we setR = 1m. In this study, the conventional BEM (UT formulation) in
conjunction with SVD is employed. In order to check the validity, the result BBEM+SVD

and the multi-domain BEM are compared with those of the exact solution, the DtN method, the
dual BEM and the ABAQUS (FEM) results. The conventional boundary element meshes for
these cases are shown in Fig.3-3(a), (b) and (c) and the multi-domain boundary element meshes
are shown in Fig.3-4(a), (b) and (c) for the single-edge, the double-edge and the central stringers,

respectively.
Case 1. Single-edge stringer with length- 1:

Using the conventional BEM{T formulation) in conjunction with SVD, théry,,1)"" zero
singular value obtained by using Eq.(3-33) foil matrix, ([KX] = [U]) is plotted versus the wave
number in Fig.3-5(a). The curve drops at the eigenvalues. By using the dual BEM and the multi-
domain BEM, the determinants in Egs.(3-32) and (3-31) versus the wave number are also shown
in Fig.3-5(b) and (c), respectively, without using the SVD technique [43]. Good agreement for the
former eigenvalues in Fig.3-5(a), (b) and (c) are made. The DtN method missed some eigenvalues
as disscussed in [43], since symmetry and anti-symmetry are not fully considered. In addition,
the exact eigenvalues satisfying (k),n = 1,2,3--- , and the FEM results using ABAQUS are
compared with those of thé7" BEM+SVD, the dual BEM (DBEM) and the multi-domain BEM
in Table 3-1(a). For this case, the number of boundary elem&pien the degenerate boundary is
5. Since thé N, + 1) zero singular valuesy, .1, originates from the nontrivial boundary mode,
Fig.3-6(a) shows th¢«y, .} along the boundary for the former eight eigenvalues. It is found
that{ty,+1} matched well with the exact boundary eigensolutions whicti-ate” sin(%), n =
1,2,--- , as predicted analytically in [43]. For the former eight eigenvalues, the first right singular
vector{y, } corresponding to the first zero singular valee = 0) along the boundary in Fig.3-

6(b), also indicate that the element of boundary mde} are trivial except on the degenerate
boundary. Since the formeY, zero singular value§r; = oy = --- = oy, = 0) originate from

the degenerate boundary, the corresponding right singular vegiors ~ {¢n,}) are found to

be trivial except on the degenerate boundary as shown in Fig.3-7, for the case 8f09. In

other words, Fig.3-7 reveals that the former five zero singular values stems from the degeneracy

due to stringers. The former eight modes by usingltieBEM+SVD are compared well with
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those of FEM as shown in Fig.3-8.
Case 2. Double edge stringer with length- 0.5:

Using the conventional BEM({T' formulation) in conjunction with SVD, théN, + 1)
zero singular value obtained by using Eq.(3-33)[féf matrix, ([K] = [U]) is plotted versus the
wave number in Fig.3-9(a). The curve drops at the eigenvalues. By using the dual BEM and the
multi-domain BEM, the determinants in Egs.(3-32) and (3-31) versus the wave number are also
shown in Fig.3-9(b) and (c), respectively. Good agreement for the eigenvalues in Fig.3-9(a), (b)
and (c) is obtained. In addition, the FEM results by using ABAQUS are compared with those
usingUT BEM+SVD, the dual BEM and the multi-domain BEM in Table 3-1(b). The former
eight modes by using th&T" BEM+SVD are compared with those of the FEM as shown in
Fig.3-10.

Case 3. Central stringer with length= 0.8:

Using the conventional BEM({T" formulation) in conjunction with SVD, théN, + 1)
zero singular value obtained by using Eq.(3-33)[tof matrix, ([] = [U]) is plotted versus the
wave number in Fig.3-11(a). The curve drops at the eigenvalues. By using the dual BEM and the
multi-domain BEM, the determinants in Egs.(3-32) and (3-31) versus the wave number are also
shown in Fig.3-11(b) and (c), respectively. Good agreement for the eigenvalues in Fig.3-11(a), (b)
and (c) is obtained. The FEM results by using ABAQUS are compared with those usifig'the
BEM+SVD, the dual BEM and the multi-domain BEM in Table 3-1(c). The former eight modes
by using thelU'T' BEM+SVD are compared with those of the FEM as shown in Fig.3-12.

3-6 Conclusions

Instead of using either the multi-domain BEM or the dual BEM, the conventional BEM was
successfully utilized to solve the degenerate boundary eigenproblem in conjunction with the
SVD technique. Not only hypersingularity can be avoided but also a single domain is required.
By detecting the successive zero singular values, the eigenvalues were found and the boundary

eigenmodes were obtained according to the corresponding right unitary vectors. Good agreement
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among the results of present method, the FEM (ABAQUS), DtN method, the multi-domain BEM,
the dual BEM and analytical solutions if available was obtained. The goal to solve the eigenprob-
lem using the singular formulation in a single domain was achieved. In addition, the boundary
mode and eigenvalue can be obtained at the same time once the influence matrix was decomposed
by using the SVD.
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Chapter 4

On the true and spurious eigensolutions for eigenproblems
using the Fredholm alternative theorem and SVD

Summary

The appearance of spurious eigensolutions for interior eigenproblems is examined by employ-
ing the complex-valued formulation, the real-part, the imaginary-part BEMs and the multiple
reciprocity method in a unified manner. In this chapter, the Fredholm alternative theorem and
SVD updating techniques in conjunction with the dual formulation are employed to deal with the
eigenproblem. Numerical examples given circular domains are illustrated to see the validity of

the present formulation.

4-1 Introduction

Solving eigenproblems by using BEM has been studied by many researchers. Many methods
including the complex-valued boundary element method [43], the multiple reciprocity method
(MRM) [37], the real-part [37, 100] and the imaginary-part BEMs [63] have been proposed. Al-
thuogh the real-part BEM can obtain the true eigenvalue, this leads to spurious roots in addition to
the correct ones. Hutchinson [81] has investigated the mode shapes in order to identify and reject
the spurious ones. Chenal. used the residue method to identify the true solution by substituting
the possible eigensolution into dual equations. One may wonder is it possible to recognize the
true or spurious eigenvalues without determining the mode shapes in advance. In order to achieve
this purpose, Chen and his coworkers [21] have studied the interior eigenproblems and published
many papers [22, 39, 101]. Among theeng.,domain partition method, SVD updating method,
CHEEF method, and GSVD technique were employed to sort out the true eigensolutions. Besides,
Chen and Wong [47], and Yeigt al. [135, 136] found analytically the spurious eigensolutions

for a rod and a beam in the MRM. In addition, Kamigtal. [86] and Yeihet al. [137] inde-
pendently claimed that MRM is no more than the real-part BEM. Ketrg. [91] employed the
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Nondimensional Dynamic Influence Function method (NDIF) to solve the eigenproblem. Chen
et al. [40] commented that the NDIF method is a special case of imaginary-part BEM. Kang and
Lee also found the spurious eigensolutions and filtered out the spurious eigenvalues by using the
net approach [89]. Later, they extended to solve plate vibration problems [90]. eTlakr{19]
proposed a double-layer potential approach to filter out the spurious eigenmodes. In this chapter,
a unified formulation will be presented, including using the Fredholm alternative theorem and
SVD techniques in conjunction with the dual formulation for sorting out the true and spurious

eigenvalues. A circular case is used to examine the validity of the present formulation.

4-2 Problem statement and the methods of solution

The governing equation for the eigenproblem is the Helmholtz equation as follows:
Vu(z) + K*u(z) =0, = in D. (4-1)

where D is the domain of interest; is the domain pointk is the wave number and(z) is the

displacement or acoustic pressure for the vibration problem or acoustic problem, respectively.

On the basis of the dual formulation, the unified null-field integral formulation for the

Helmholtz equation using the direct method can be written as

O:/BT(S,:L’)u(s)dB(s)—/BU(s,x)t(s)dB(s), x € D° (4-2)
0:/BM(S,:E)u(S)dB(S)—/BL(s,x)t(s)dB(s),, xr € D (4-3)

where D¢ is the complementary domain @¥, x = (p, ¢) is a field point andr = (R, 0) is a

source point{(s) = %“—7553) , U(s, x) is the fundamental solution and the explicit forms for the four

methods as shown bellow:

Direct BEM | Complex-valued BEM Real-part BEM| Imaginary-part BEM| MRM

. (1) _
U(S,CL’) f'nng (kr) 7rY02(k7‘) wJo(kr) g U(kﬂ“)
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wherer = |s — x|, Hél)(kr) is the first kind Hankel function with zeroth order adgl k) and
Yy(kr) are the zeroth order Bessel functions of first kind and second kind, respectively. The

fundamental solution of the MRM is

T o0 o0
FYo(kr) = (Inr) > palkr)® > go(kr)™ (4-4)
n=0 n=0
T k
= Z¥lhr) =[5 + ] olhr), (4-5)
in which v is the Euler constanf,, = % andg, = (]jl)((—n”!)t,l)(l + 3+ 3---+ ). Another
kernel functions are derived by
U (s, x)
T(s,x) = T on.
oU (s, x)
L(S7X) = Ta
0*U(s,x
M(s,x) = —8n(n )

The true and spurious eigensolution were solved by using the degenerate kernel, Fourier
series and circulants in continuous and discrete systems. Four approaches, the complex-valued
formulation, the real-part, the imaginary-part BEMs and MRM, are summarized and the occur-

rence of true and spurious eigensolutions is also reviewed in the following subsection.

4-2-1 True eigensolutions by using the complex-valued BEM

By using theUT and LM formulations for the Dirichlet eigenproblem, the eigenequations are

derived for the circular problem, respectively
UT: [Jo(kp) + iYe(kp)]Je(kp) = 0, (4-6)

and
LM [Jj(kp) +iY] (kp)) Je(kp) = 0. (4-7)

The true eigenvalues are the roots.Jofkp) = 0 for the common part in the eigenequations of
Eqgs.(4-6) and (4-7).

For the Neumann problem, the eigenequations are derived, respectively
UT : [Ju(kp) + iYe(kp)]Jy(kp) =0, (4-8)
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and

LM = [Jy(kp) + 1Y (kp)]Jy(kp) = 0. (4-9)

The true eigenvalues are the rootsfkp) = 0 for the common part in the eigenequations of
Eqgs.(4-8) and (4-9).

4-2-2 True and spurious eigensolutions by using the real-part BEM

By employing the real-part kernels in th&" and LM equations for the Dirichlet eigenproblem,

we obtain the eigenequations,
UT: Yykp)Je(kp) =0, (=0,£1,£2,--- +(N —1),N, (4-10)

LM : Y[(kp)Jekp) =0, £=0,41,42, -+, +(N —1),N, (4-11)

respectively. The: value satisfying Eqs.(4-10) or (4-11) may be spurious eigenvalues of union
set (;(kp) = 0orY/(kp) = 0) or true eigenvalues of intersection sét(p) = 0) to satisfy both
Egs.(4-10) and (4-11).

For the Neumann problem, we obtain the eigenequations,
UT: Yikp)J,(kp) =0, £=0,£1,%£2,--- (N —1),N, (4-12)

LM : Y/(kp)Ji(kp) =0, €=0,+1,42 --- +(N —1),N, (4-13)

respectively. The: values satisfying Eqgs.(4-12) or (4-13) may be spurious eigenvalue of union
set V;(kp) = 0 or Y/ (kp) = 0) or true eigenvalue of intersection séf((kp) = 0) to satisfy both
Eqgs.(4-12) and (4-13).

4-2-3 True and spurious eigensolutions by using the imaginary-part BEM

By employing the imaginary-part kernels in th&" and LM equations for the Dirichlet eigen-

problem, we obtain the eigenequations,
T . Jy(kp)Je(kp) =0, (=0,£1,+£2,--- ,£(N —1),N, (4-14)
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LM :  J)(kp)Jo(kp) =0, €=0,£1,42, - - £(N—1),N, (4-15)

respectively. Theé values satisfying Eqgs.(4-14) or (4-15) may be spurious eigenvalues of union
set (Ju(kp) = 0 or J;(kp) = 0) or true eigenvalues of intersection sét(¢p) = 0) to satisfy both
Eqgs.(4-14) and (4-15).

For the Neumann problem, we obtain the eigenequations,
UT . Jolkp)Jy(kp) =0, £=0,41,42--- ,+(N —1),N, (4-16)

LM :  Jikp)Ji(kp) =0, €=0,+1,42 --- +(N —1),N, (4-17)

respectively. Theé values satisfying Eqgs.(4-16) or (4-17) may be spurious eigenvalues of union
set (Jy(kp) = 0 or J;(kp) = 0) or true eigenvalues of intersection séf(¢p) = 0) to satisfy both
Eqgs.(4-16) and (4-17).

4-2-4 True and spurious eigensolutions by using the MRM

By employing the MRM kernels in th€'T" and L M equations for the Dirichlet eigenproblem, we

can summarize the eigenequations as follows [36],
True eigenequationJ, (kp) = 0, (4-18)
By using the direct MRM[/'T") formulation, we have

Spurious eigenequationg%(kp) — (lng + ) Jo(kp) = 0. (4-19)

By employing the MRM kernels i/'T" and LM equations for the Neumann problem, we

can summarize the true eigenequation as follows,
True eigenequation;];(kp) =0, (4-20)
By using the direct MRM [.M), we have

Spurious eigenequationgYo'(kp) — (lng +7)Jy(kp) = 0. (4-21)
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4-3 Extraction of the spurious eigensolutions by using the Fredholm alterna-

tive theorem and SVD updating techniques

Fredholm alternative theorem:
The linear algebraic equatidi] {u} = {b} has a unique solution if and only if the only contin-

uous solution to the homogeneous equation

[K]{u} = {0} (4-22)

is {u} = {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

(K" {o} = {0} (4-23)

has a nontrivial solutiod¢}, where[K]T is the transpose conjugate matrix[&f] and {b} must

satisfy the constrair(t{b}” {4} = 0). By using the UT formulation, we have

U (k)] {t} = [T (k)] {u} = {b}. (4-24)

According to the Fredholm alternative theorem, Eq.(4-24) has at least one solutigr fbthe

homogeneous adjoint equation
U (k)] {1} = {0}, (4-25)

has a nontrivial solutiod ¢, }, in which the constraint{b}?{¢,} = 0) must be satisfied. By
substituting{b} = [T'(k)]{u} in Eq. (4-24) into{b}T{¢:} = 0, we obtain

{u}" [T (k)" {én} = 0. (4-26)
Since{u} is an arbitrary vector for the Dirichlet problem, we have
[T(k)]" {61} = {0}, (4-27)

where{ ¢, } is the spurious mode. Combining Eq. (4-25) and Eq. (4-27) together, we have

YOI o) 0y o (o [ e ] -0 @29
i)
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Eq.(4-28) indicates that the two matrices have the same spurious{mppeorresponding to the
same zero singular value for the spurious eigenvalu@he former one in Eq.(4-28) is a form of
updating term and the latter one is a form of updating document. By using the real-partBEM (
formulation) in conjunction with the Fredholm alternative theorem and SVD updating techniques,

the spurious eigenvalue satisfies

[Un(k)]"

[[TR(k - {657} = {0}, (4-29)
R\ Ivs

where the subscrip® denotes the real part.

In the hypersingular formulation () method), the spurious eigenvalue satisfies

Lr(ks)]"
ol ”T {65} = {0}, (4-30)
[MR( S
By using the imaginary-part BEM, the spurious eigenvalue satisfies
T
VI oy = g0y (4-31)
[T7 (ks

where the subscript denotes the imaginary part. In the hypersingular formulation of imaginary-

part BEM, the spurious eigenvalue satisfies

[ Ly (k)]

(M (k)]

] {670} = {0}. (4-32)

4-4 Extraction of the true eigensolutions by using the Fredholm alternative

theorem and SVD updating techniques

For the Dirichlet eigenproblem, the true eigenvatusatisfies

[UR(kt)} {wE%UL)} _ {O}, (4-33)
[Lak)]

and -
[Ur (k)] {¢§UL)} _ {0}, (4-34)
[Li(ko)] |
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by using the real-part and imaginary-part BEMs, respectively.

For the Neumann problem, the true eigenvalue can be sorted out by using

(Tr(kt)] {77/}](2TM)} — {0}, (4-35)
[Mp(Ky))

and
[T (k)] {w§TM)} — {0}, (4-36)
(M (k)]

by using the real-part and imaginary-part BEMs, respectively.

General speaking, the SVD structure for the four influence matrices in the dual BEM are

unified in Tables 4-1(a) and 4-1(b) whén= k, andk = k;, respectively. .

4-5 Numerical examples

Both the Dirichlet and Neumann eigenproblems for a circular domain with radmsare con-
sidered here. The true and spurious eigenvalues are shown in Tables 4-2 and 4-3 by employing
various approaches, the real-part and the imaginary-part BEMs as well as singular and hypersin-

gular formulations.

In Table 4-2, the real-part BEM is used for the interior eigenproblem and twenty constant
elements are adopted on the boundary. For the Dirichlet eigenproblem, the true eigenvalues,
J.(ka) = 0, can be found by checking the same dropping positions in the the figures of the local
minimum singular value obtained froffy] and[L] matrices. For the Neumann eigenproblem,
the true eigenvalue$, (ka) = 0, are also found in the similar way by checking local minimum
singular value obtained from th&'] and [//] matrices. The local minimum singular value ob-
tained from the updating matricd#] L]7, and[T" M| occurs in the true eigenvalues. It is found
that[U] and[7'] matrices have the same spurious eigenvalugs,0fa) = 0 by using the singu-
lar formulation. In the hypersingular formulatioft,] and[M/] matrices have the same spurious
eigenvalues o¥, (ka) = 0. The updating matrice$l/ 7', and[L M] can sort out the spurious

eigenvaluesy, (ka) = 0 andY, (ka) = 0 by using the SVD, respectively.
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By using the imaginary-part BEM, only eight constant elements are used on the boundary
in order to avoid the ill-conditioned matrix. The results are shown in Table 4-3. For the Dirichlet
eigenproblem, the true eigenvaluds(ka) = 0, can be found by checking the same dropping po-
sitions in the the figures of the local minimum singular value obtained fidnand[L] matrices.

For the Neumann eigenproblem, the true eigenvalli¢sa) = 0, are also found in the similar

way by checking local minimum singular value obtained from [theand [/ ] matrices. The

local minimum singular value obtained from the updating matrigésL]”, and[T" M]* occurs

in the true eigenvalues. It is found thHat] and[7"] matrices have the same spurious eigenvalues

of J,(ka) = 0 by using the singular formulation. In the hypersingular formulatjéh.and [} ]
matrices have the same spurious eigenvalues @fa) = 0. The updating matrice$/ 77, and

[L M] can sort out the spurious eigenvaluds(ka) = 0 andJ, (ka) = 0 by using the SVD,
respectively. In this case, spurious multiplicity appears since spurious since spurious eigenvalues

are equal to true ones.

The true and spurious eigenvalues by using MRM are shown in Table 4-4. It is found that all

the figures drop at the positions as predicted analytically in EQs.(4{2936).

4-6 Conclusions

By using the Fredholm alternative theorem and SVD techniques in conjunction with the dual
formulations, the true and spurious eigenvalues in the complex-valued formulation, the real-part,
the imaginary-part BEMs and MRM are sorted out successfully. The numerical results agree well
with the analytical prediction. Although Table 4-2, 4-3 and 4-4 match well with the analytical
prediction, it is worth mentioning that the imaginary-part BEM becomes ill-conditioned once the
number of element increaesd. lll-conditioned behavior is inherent in the regular formulation and

deserves further study.
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Chapter 5

Fictitious frequency revisited

Summary

The nonexistence and nonuniqueness problems associated with integral equation methods for
exterior acoustics are revisited. Based on the Fredholm alternative theorem in conjunction with
the SVD updating technique, the fictitious frequency and mode can be extracted. After selecting
the CHIEF points, we can obtain the influence row vectors. A criterion in selecting the minimum
number of CHIEF points and their positions is developed to check the validity by testing the
orthogonality condition between the influence row vector and right unitary vector. It is proved

in the discrete system that the source of numerical instability originates from the zero division
by zero by using the generalized coordinates of unitary vectors in SVD. A flowchart to detect the
fictitious frequency and to overcome the numerical instability by the CHIEF method is plotted and
implemented in our program. Radiation problems of a cylinder and a square rod are demonstrated

to see the validity of the present formulation.

5-1 Introduction

Boundary element method has been used for solving radiation and scattering problems [15, 20]
for many years. The fictitious-frequency problems in the exterior acoustics have the same rank-
deficiency mechanism as the spurious eigenvalue appears in the interior eigenproblem when the
multiple reciprocity BEM, the real-part or the imaginary-part BEM is employed. In a fictitious-
frequency problem of the exterior acoustics, the ill-conditioned matrices occurring in the BEM
[49] are linearly dependerite., they are rank deficient. For this problem, Schenck [122] proposed
the CHIEF (Combined Helmholtz Interior integral Equation Formulation) method by collocating
the point outside the domain as an auxiliary constraint to promote the rank of influence matrices.
Chenet al. extended the CHIEF method to CHEEF method for overcoming the spurious eigen-

values. However, this method still has some drawbacks. If the CHIEF point locates on or near the
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nodal line of interior modes, it can not provid a valid constraint [85]. To overcome this problem,
Chenet al. [15] presented the analytical study to select the valid CHIEF points for the circular
case using circulants. For the same purpose to general cases, a criterion for checking the validity
of the selected CHIEF points will be addressed in detail by employing the Fredholm alternative
theorem and the SVD updating techniques. Numerical examples will be demonstrated to see the

validity of the present formulation.

5-2 Problem statement and review of the CHIEF method

In this section, the CHIEF method for the two-dimensional Helmholtz equation is briefly summa-

rized here. The governing equation for the exterior acoustics is
V2u(z) + k*u(z) =0, = in D, (5-1)

wherew(z) and k are the acoustic pressure and the wave number, respectively. To solve the

problem by using the boundary integral formulation, we have

mu(z) = C’.P.V./ dB(s), (5-2)

| T(s 2)u(s)AB(s) ~ RPV. / U(s, ) 248)

B on,
wherez is the field points is the source pointy, is the normal vector for the boundary point
C.P.V.andR.P.V. denote the Cauchy principal value and Riemann principal value, respectively.
By discretizing the boundary integral formulation (BIE) in Eq.(5-2) int@onstant elements, the

linear algebraic equation can be obtained

[UI{t} = [T1{u}, (5-3)

where[U] and[T’] are the influence matrices [44]. For the ficitious frequency case, the influence
matrix is singular,.e., the rank is deficient. In order to promote the rank, the CHIEF method
by collocating the points outside the domain as auxiliary constraints was successfully applied to
deal with this problem. By collocating the point outside the domain for the null-field BIE, the
additional constraint is

<w> {t} =<v> {u}, (5-4)
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where< w > and< v > are the influence row vectors by collocating the point in the null-field

equation. By combining Eq.(5-3) with Eq.(5-4), we have the over-determined system

[JT>]{t}[<€L {“}’ (5-5)

if the sufficient CHIEF points are provided.

5-3 Detection of the fictitious frequency and ficitious mode in BEM for ex-

terior acoustics using the Fredholm alternative theorem and SVD technique

Fredholm alternative theorem:
The linear algebraic equatidi’| {u} = {b} has a unique solution if and only if the continuous

solution to the homogeneous equation

[K]{u} = {0}, (5-6)

is {u} = {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

[K]"{¢} = {0} (5-7)

has a nontrivial solutiod¢}, where[ K] is the transpose conjugate matrix[éf] and{b} must

satisfy the constraint{s}{¢} = 0). By using thelUT formulation, we have

[UR)] {t}y = [T(R)] {u} = {b}. (5-8)

According to the Fredholm alternative theorem, Eq.(5-8) has at least one solutift} fibthe

homogeneous adjoint equation
U (kp)]" {01} = {0} (5-9)
has a nontrivial solutiof¢, }, wherek; is the fictitious wave number. For the Dirichlet problem,
the constraint{v}’{¢,} = 0) must be satisfied. By substitutifg} = [T'(k;)]{u} in Eq. (5-8)
into {b}{#,} = 0, we obtain
{u}™ [T (k)" {or} = 0. (5-10)

55



Since{u} is an arbitrary vector, we have
[T (ks)]" {61} = {0}, (5-11)
where{¢, } is the ficitious mode. Combining Eq.(5-9) and Eq.(5-11) together, we have

U (k)"
[T (kp)]"

]{ebl}{o} or {op}"" | [U(ky)] [T(ky)] | = {0}. (5-12)

Eg.(5-12) indicates that the two matrices have the same spurious{mppeorresponding to the
same zero singular value when rank deficiency occurs in case of ficitious frequency. The former

one in Eq.(5-12) is a form of updating term and the latter one is a form of updating document.

By using the singular and hypersingular formulations, the fictitious wave nurhpef, a

multiplicity P, satisfies

[ [Ui(kf)]H ] (6} ={0}, j=12.- P (5-13)
i(ky
[Li(kf>]H {¢;} ={0}, j=1,2---.P (5-14)
[Mi(ky)]

where the subscriptdenotes the use of interior degenerate kernel for the exterior problem.

5-4 Mathemetical structure for the updating matrix

According to the SVD technique, Eq.(5-13) results in
Uy =0{¢;} = {0}, j=1,2,---,P (5-15)

where{@bj(.U)} and{@bj(.T)} are the right unitary vectors fot/| and [T}, {¢;} are the common left

unitary vectors. By using the updating term for deriving the true boundary m@,@%}s in the

interior Dirichlet eigenproblem, we have

e

AN -
I ] {% } - {0}7 J= 1727"' 7P (5'17)
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where the subscriptdenotes the use of exterior degenerate kernel for the interior problem. Since

the kernel functions have the symmetry and transponse symmetry properities, we have
Uc(s,x) = Ui(x,s) or [U] =[U;] symmetry, (5-18)
and
Le(s,z) =T;(x,s) or [L]=][T;] transponse symmetry. (5-19)
By using Egs.(5-18) and (5-19), Eq.(5-17) reduces to

[Ui

1

]]{wj”}{o} j=1,2,--- P (5-20)

=

Comparing Eq.(5-20) with Egs.(5-15) and (5-16), we find

{vi "y ={v"y =)} j=12--.P (5-21)
It means that théU;] and [T;] matrices for the exterior acoustics, have the same right singular

vectors (7'}) as the[U.] and[L.] matrices have for the interior Dirichlet eigenproblem.

In order to examine the left and right singular vectors in the singular matrix, Eq.(5-13) can

be rewritten as follows:

[U"(kf)]H {6 ns1 =0 v j=1,2,---,P. (5-22)
Tk |y 7 ) v

J

Generally speaking, the matrix of Eq.(5-22) can be decomposed into

[Ui]H D H
" = [U" lansan [Elanx N [Pl N w v (5-23)
[E] 2N XN
where
[P o = {wP} - {vB} | {Wpa} - {von} | (5-24)
{7} - {vB} | {¥pn} - {van} .
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-[O]PXP R | |
: Op+1 :
0 cer eer ON
[(Xlonsxny = (5-25)
0 B
0 N
L 4 2NxN
and
H
[@lNon = | {on} - {or} | {opn} - {on} [, o (5-26)

Eq.(5-23) indicates that all the ficitious modgs}, 1 <i < P, and the true mode&/)”}, 1 <

i < P, are obtained at the same time once the updating matrix is decomposed by SVD technique.

In other words, the SVD structure for the four influence matrices in the dual BEM can be
unified in Table 5-1.

5-5 Source of numerical instability - zero division by zero

The analytical study and numerical experiments for the optimum numbers and proper positions of
the selected CHIEF points have been proposed by @hah [15] for a circular case. However,

we will extend to the general case in a discrete system. In the case of the fictitious frequency of
multiplicity P, P CHIEF points are needed. One can obt&ifictitious modes by using Eq.(5-

13). The source of number instability is proved as follows:

According to the right unitary vectofs); } for [T'] and[U] matrices, we can express the boundary

data into
{M=Z@MW=WWwL (5-27)
{t} = afel”} = (W)}, (5-28)
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where N is the number of unknownsy; and 3; are the generalized coordinates. By using the

SVD technique, Eq.(5-8) can be rewritten to
@[S {a} = {0}, (5-29)

By pre-multiplying the regular mod{aqﬁgU)}H, P+ 1 < i < N, to both sides of Eq.(5-29), we
have

o Doy = {o" VI b}, P+1<i<N. (5-30)

Since the singular valueéU), P+1 <i < N, are nonzero, the generalized coordinaigs P+

1 <17 < N, can be determined by

1
ai = e}, P+1<i<N. (5-31)
i

By pre-multiplying the fictitious mode{¢§U)}H, 1 < i < P, to both sides of Eq.(5-29) and

using orthogonal propurty, we have
oo = {a"} b}, 1<i<P (5-32)

Since the singular values”’, 1 < i < P, are zero, the coefficients;, 1 <i < P, can not be

determined due to zero division by zero from Eq.(5-31) in the fictitious case of multipkcity

It is interesting to find that the generalized coordinatgses, - - - andap are the terms of

zero division by zero in Eq.(5-32) since
{6y T{ay =0, P+1<i<N, (5-33)

after using{b} = [T]{a} and[T]#{\""} = 0.

5-6 A criterion to check the validity of CHIEF points

For the fictitious frequency of a multiplicit¥, the generalized coordinates, as, - - - ,ap_; and
ap can not be determined from Eq.(5-31). By choosiA@CHIEF points, we have additional

constraints
Upp | UPK}{OC}:[TPP‘TPK]{ﬁ}7 (5-34)
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where the subscrip® and K denote the degree of freedom separated by the fictitioys st - - | P)
and the regular sétP? + 1, P + 2,--- , N). The elements ifUpp|, [Upk], [Tpp] and[Tpk] are

definded as
(Upp)y = <wi>{"}, 1<i, j<P (5-35)
(Up)iy = <w;> {7}, 1<i<P, P+1<j<N, (5-36)
(Tep)y = <wv>{v)"}, 1<ij<P (5-37)
(Tpr)i; = <vi>{"}, 1<i<P, P+1<j<N. (5-38)
Sinceap,1,apia, -+, anday can be determined by Eq.(5-31), and the influence row vectors

<w; >, i=1,2,---, P can be obtained by collocating the CHIEF points, Eq.(5-34) reduces to

(a7l o api1
(Upp |30 b= Toe | Tex [{ 1 - Uee | P p =) (539)

ap ﬁN N

The terms of the right hand side of the equal sign can be calculated as a load{y&cgince
their values can be determined. The unknown vegtof; is solvable once the determinant of

the matrix[Upp| is nonzero as follows:
<w > {n} o <wn> )
det : : # 0. (5-40)
<wp > {1} - <wp > {5}
Whether the number of CHIEF point is sufficient or not depends on the multipigitye., we
need at leasP CHIEF points for the fictitious frequency of a multiplicity to determine the
P coefficients(a; - - - a,). Once theP CHIEF points are selected, their validity depends on the

nonzero determinant of Eq.(5-40).

For the special case of multiplicity ori¢> = 1), EQ.(5-40) reduces to
() -
<w>{; '} #0. (5-41)

By collocating the interior point, the magnitude of the determinant represent the inner product

of the influence row vector and the interior mode sifi¢é”)} is the true boundary mode of the
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Dirichlet eigenproblem. The value is equal to the distribution of interior mode.

For the special case of multiplicity tw@® = 2), Eq.(5-40) reduces to,

() (U)
<wp > <wyp >
det|| =" WEU)} o wfm} #0. (5-42)
<wy >{Y'} <we>{1hy '}
In the following examples, both the multiplicity o = 1) and two(P = 2) will be disscussed

for cylinder and square rod radiators.

For the Neumann problem, we can also provide the same criterion in a similar way by re-

placing< w > and{\"’} with < v > and{4\"}, respectively.

5-7 Numerical examples

Case 1: infinite cylinder radiation

An exterior acoustic problem of a circular boundary with radius- 1 m for the Dirich-
let cylinder conditions is considered here. According to the flowchart illustrated in Fig.5-1, the
Fredholm alternative theorem and SVD updating techniques are employed to detect the fictitious
frequencies as shown in Fig.5-2. It is found tfidf] and [T;] matrices have the same ficitious
poles ofJ,,(ka) = 0. The spurious poles agree with the true poles of the interior Dirichlet eigen-
problem. For the hypersingular formulatidi,] and[}/| matrices also have the same fictitious
poles of.J/ (ka) = 0 which are the true eigenvalues for the Neumann problem. After checking the
multiplicity of the fictitious pole, two cases of multiplicity orié = J(§2) = 0), and multiplicity

two (k = Jl(l) = 0), are adopted for demonstrating the validity of the present formulation.
1. Multiplicity of one (k = J{¥):

For selecting all the possible CHIEF points, their positions locate inside the circle as shown
in Fig.5-3(a). In this case, the determinants of Eq.(5-41) were calculated for each interior point
and were plotted as shown in Fig.5-3(b). Contour plot shows the distribution of the magnitude
of the real and imaginary parts of determinant. The selected CHIEF point of the darker color is
vailder than the point with the whiter color. The failure points are found on the nodal line with

white color and the results matched well with the analytical prediction [15].
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2. Multiplicity of two (k = J{V):

In this case, one CHIEF point was fixed first and then consider the other CHIEF points as a
variable. For selecting all the possible CHIEF points for the variable point, their positions located
inside the circle as shown in Fig.5-3(b). The value of determinants were calculated by changing
the second CHIEF points position in the interior rigion and were plotted in Fig.5-4. Contour plot
shows the distribution of the magnitude of the real and imaginary parts of determinants. The
selected CHIEF point of the darker color is vailder than the point with the whiter color. The
failure points are found on the nodal line with white color and the results matched well with the

analytical data [15].
Case 2: infinite square radiation

An exterior acoustic problem of a square boundary with lateral length 2 m for the
Dirichlet boundary conditions is considered here. The Fredholm alternative theorem and SVD

updating techniques are employed to detect the fictitious frequencies as shown in Fig.5-5.
1. Multiplicity of one (k = 2.22) and(k = 4.44) :

For selecting all the possible CHIEF points, their positions located inside the square as shown
in Fig.5-6(a). In this case, the determinants of Eq.(5-41) were calculated one by one and were
plotted as shown in Fig.5-6(b). Contour plot shows the distribution of the magnitude of the real
and imaginary parts of determinant. The selected CHIEF point of the darker color is vailder than

the point with the whiter color. The failure points are found on the nodal line with white color.
2. Multiplicity of two (k = 3.51):

In this case, one CHIEF point was fixed first and then consider the other CHIEF points as
a variable. For selecting all the possible CHIEF points, their positions spread inside the square
as shown in Fig.5-6(a). The determinants were calculated by changing the second CHIEF points
location in the square and were plotted in Fig.5-7. Contour plot shows the distribution of the
magnitude of the real and imaginary parts of determinants. The selected CHIEF point of the
darker color is vailder than the point with the whiter color. The failure points are found on the

nodal line with white color.
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5-8 Conclusions

In order to overcome the rank-deficiency problem due to fictitious frequency, the CHIEF method
was revisited and reformulated in a unified manner by using the Fredholm alternative theorem
and SVD technique. The ficitious modes were obtained in the singular vectors of SVD as well as
the true eigenmodes for the interior problems at the same time once the updating matrix was de-
composed by using the SVD technique. Besides, the minimum number of CHIEF points was also
addressed. A criterion for checking the validity of the CHIEF points was presented analytically
in the discrete system. In addition, the source of numerical instability due to fictitious frequencies
was found to originate from the zero divison by zero. Numerical examples of the cylinder and

square rod radiators were demonstrated to see the validity of the unified formulation.
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Chapter 6

Conclusions and further research

6-1 Conclusions

Four degenerate problems in the BEM were reviewed in this thesis. Mathematically speaking,
the numerical problems originate from the rank deficiency of the influence matrix. Their rank-

deficiency mechanisms were found and the numerical instability was solved in a unified manner
by using the Fredholm alternative theorem and SVD techniques. From this study, several conclu-

sions can be summarized as follows:

1. For the interior eigenproblem and exterior problem, spurious (fictitious) mode and true
mode were separated to be imbedded in the left and right unitary vectors, respectively. after
decomposing the influence matrix using the SVD updating techniques, Fredholm alternative

theorem was adopted to obtain the updating documents in SVD.

2. In Chapter 2, it has been proved that the degenerate scale occured in the Dirichlet problem
of 2-D Laplace problems by using the BEM. The conventional BEM formulation) can
not obtain acceptable results for the torsion bar problems with the degenerate scale. For
an arbitrary cross section, instead of direct searching for the degenerate scale by trial and
error, a more efficient technique was proposed to directly determine the degenerate scale
since only one normal scale needs to be computed. Three regularization techniques, method
of adding a rigid body mode, the hypersingular formulation and the CHEEF method, were
successfully applied to overcome the rank-deficiency problem caused by the degenerate
scale. Also, the added terra” of a rigid body mode in the fundamental solution of BEM

has been proven to shift to another degenerate scale by a facioréf

3. The degenerate boundary has been solved by using the multi-domain BEM and the dual
BEM. However, for the multi-domain BEM, one important drawback is incapability of
dealing with infinite domain or semi-infinite domain problems. For the dual BEM, hyper-

singular integrals must be handled. In Chapter 3, a new method, conventional BEM (
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equation) in conjunction with the SVD techniques, for solving the degenerate boundary
problem, was presented. The mechanism of rank-deficiency for the degenerate boundary
problem stems form two sources, one is the degenerate boundary and the other is nontrivial

eigensolution.

4. For interior eigenproblems, some constraints are lost if either the real-part or the imaginary-
part dual BEM was used. In other words, the appearance of the spurious eigenvalue origi-
nates from the selected numerical methadlg,, UT equation,L M equation, single-layer
method and double-layer method. For the real-part or imaginary-part dual BEM, the Fred-
holm alternative theorem in conjunction with SVD updating techniques was employed to
extract the spurious eigenvalues for singular and hypersingular formulations. Besides, true
eigenvalues can be detected for the Dirichlet or Neumann problem by using the SVD tech-
nique for the dual BEM.

5. In Chapter 5, a criterion was developed to check the validity of the selected CHIEF points
by testing the orthogonality condition between the influence vector of collocation point
and right singular vector. For exterior problems, the number of the required CHIEF points
depend on the multiplicity of the corresponding fictitious eigenvalue. The fictitious mode
can be extracted by using the SVD updating technique. The value of the inner product

provides the valid (nonzero) or invalid (zero) information. Numerical results agree well.

6-2 Further research

There are several researches need further investigation as follows:

1. Although the degenerate scale occurs in the Dirichlet problem of simply two-dimensional
Laplace problems by using the BEM, there is no proof of the occurrence of degenerate scale

for the problem with the mixed-type boundary condition.

2. Inacontinuous system, the added térrhof a rigid body mode in the fundamental solution
of BEM has been proven to shift to another degenerate scale by a factoréf However,

the proof may be extended to the discrete system.
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3. On the basis of the success of Chapter 3, the degenerate boundary problem for the Laplace
equation may be solved by using the conventional BEM (UT formulation) and the SVD
techniques. Also, the mathematical relation between the present method and the multi-

domain BEM should be constructed.

4. The main drawback of the imaginary-part BEM seems to produce ill-conditional matri-
ces. While this is sometimes the case, it is hoped that further research can alleviate the
drawback. In addition, the mathematical equivalence between the imaginary-part BEM,
the Trefftz method, the edge function method and the boundary collocation method (BCM)

needs further investigation.

5. Whether the spurious (ficitious) modes in th€ and L M formulations are the same or not

deserves further study.

6. In chapter 5, a criterion for a circular domain has been developed to check the validity of the
selected CHIEF point by testing the orthogonality condition between the influence vector

and fictitious mode. This criterion could be tested for problems with general boundaries.

7. Although we have proved the existence of degenerate scale in BEM for 2-D Laplace prob-

lem, the uniqueness theorem needs further examination.
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