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Abstract

In this thesis, the regularized meshless method is adopted to solve Laplace problems and
eigenproblems with multiply-connected domain, respectively. Here, the solution is represented
by using double-layer potential. The subtracting and adding-back technique is used to
regularize the singularity and hypersingularity of the kernel functions. Only boundary nodes on
the real boundary are required by using the proposed technique in a different way of
conventional MFS by putty singularities on fictition boundaries. A linear algebraic equation is
obtained free of mesh generation. After matching boundary conditions, the unknown densities
in the algebraic system can be easily determined. Test of convergence and sensitivity study of
the proposed method are also done. Finally, several engineering problems including multiple
inclusions problem under antiplane shear, piezoelectricity problems with multiple inclusions
and multiply-connected acoustic eigenproblem, were given to demonstrate the validity of the
proposed method. Numerical results agree well after comparing with the available exact
solution and those of boundary element method, point-matching method and finite element
method. A general-purpose program for multiple cavities and inclusions of various shapes and

arbitrary positions was developed.

Keywords: Laplace problem, multiple holes, multiply-connected domain, eigenproblem,
method of fundamental solution, Regularized meshless method, inclusion, piezoelectricity,
eigenproblem, antiplane shear
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Chapter 1
Introduction

1.1 Motivation of the research

To simplify complexity of numerical methods in the preprocessor of data
preparation, meshless methods were developed to accelerate the speed of model
creation. The mesh reduction techniques possess a great promise to replace the FEM
and BEM as a dominant numerical method. Because of neither domain nor surface
meshing are required for the meshless method, it is very attractive for engineering
communities.

The method of fundamental solutions (MFS) is one of the meshless methods as
shown in Fig. 1-1 (a) and belongs to a boundary method for boundary value problems,
which can be viewed as a discrete type of indirect boundary element method. The
MFS was attributed to Kupradze in 1964 [1] and had been applied to potential [2],
Helmholtz [3, 4, 5], diffusion [6], biharmonic [7] and elasticity problems [8]. The
solution procedure makes use of the fundamental solution which satisfies the
governing equation in the interested domain. To avoid the singularity problem, the
solution is represented as a set of singular kernels using the single layer potentials on
the fictitious boundary. The kernel function is composed of two-point function which
is one kind of the radial basis functions (RBFs). The independent variable of
two-point function only depends on the distance between the two points. An overview
literature on the MFS over the last three decades can be found in Ref. [2]. The
diagonal coefficients of influence matrices are infinite when the fictitious boundary

approaches the real boundary. Despite singularity-free merit, the influence matrices

1



become severely ill-posed when the fictitious boundary is far away from the real
boundary. It results in an ill-posed problem since the condition number for the
influence matrix becomes very large. The MFS is still not a popular method because
of the debatable artificial boundary distance of source location in numerical
implementation especially for a complicated geometry. Therefore, many scholars put
forward schemes to improve this method. Chen et al. [5] in Taiwan proposed an
imaginary-part BEM to solving eigenproblems. On the other hand, Chen [9] in China
independently developed the boundary knot method (BKM), uses the nonsingular
general solution to avoid the fictitious boundary outside the physical domain in the
method of fundamental solution. In order to use nonsingular solution, Laplace
problem was solved by Chen using the Helmholtz equation with small wave number.
For the Laplace problem, Young et al. [10] developed a new method to improve
defects of MFS as shown in Fig. 1-1 (b). Later, they extended to solve Helmholtz
problem of exterior acoustics [3] by using the same idea.

Young et al. [3, 10] developed a new MFS, namely regularized meshless method
(RMM), to solve potential problems including the Laplace and exterior acoustic
problems. The proposed singular meshless method behaves like the MFS by
improving the singularity evaluation of diagonal terms when the source and
observation points are coincident to avoid the ambiguity of off-set distance of the
fictitious boundary for the conventional MFS. The RMM eliminates the perplexing
artificial boundary in the MFS, which can be arbitrary. The subtracting and
adding-back technique [3, 10, 11, 12] can regularize the singularity and
hypersingularity of the kernel functions. This method can simultaneously distribute
the observation and source points on the real boundary even using the singular kernels
instead of non-singular kernels [13, 14]. The diagonal terms of the influence matrices

can be determined out by using the proposed technique. However, numerical cases of
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above mentioned two papers were limited on problems of simply-connected domain.
Also, eigensolution for simply-connected problem was not solved yet by RMM. Our
focus is to extend to solve for multiply-connected Laplace and eigenproblems using
RMM. For eigenproblems, simply-connected case is tested first in this thesis.

In this thesis, we implement the RMM to investigate some engineering problems
including multiple elastic inclusions under anti-plane shear, multiple piezoelectric
inclusions under anti-plane shear and in-plane electric field and simply,

multiply-connected acoustic eigenproblems.

1.2 Organization of the thesis

The frame of this thesis is shown in Fig. 1-2. In this thesis, the applications of
multiply-connected-domain problems with multiple inclusions under remote shear,
antiplane piezoelectricity with multiple inclusions and acoustic eigenproblem are
investigated. The content of each chapter is summarized below

In chapter 2, we extend the validity of RMM for the Laplace equation to
multiply-connected domain problems. The accuracy and stability of the RMM are
verified in numerical experiments of the Dirichlet, Neumann, and mixed-type
problems containing multiple holes.

In chapter 3, we focus on antiplane problems with multiple inclusions by using
the regularized meshless method. We develop a systematic approach for solving
antiplane problems with multiple inclusions by using the present method. Finally, the
accuracy and stability of the present method are verified by two numerical examples.

In chapter 4, the applications to antiplane piezoelectricity problems with multiple

inclusions are considered. The piezoelectricity problem with multiple inclusions



subjected to out-of-plane displacement field and in-plane electric field is solved. The
accuracy of the proposed method is demonstrated through numerical examples after
comparing with analytical solutions.

In chapter 5, we extend the RMM to acoustic eigenproblems with simply and
multiply-connected domains. True and spurious eigenvalues are found by using the
present method. Spurious eigenvalue is filtered out by using the technique of SVD
updating term. The accuracy and stability of the RMM is also examined in illustrative
examples.

Finally, we draw out some conclusions and further research in the chapter 6.



Chapter 2
Regularized meshless method for
multiply-connected-domain Laplace problems

Summary

In this chapter, the regularized meshless method (RMM) is developed to solve
two-dimensional Laplace problems with multiply-connected domain. The solution is
represented by using the double layer potential. The source points can be located on the
real boundary by using the proposed technique to regularize the singularity and
hypersingularity of the kernel functions. The troublesome singularity in the traditional
methods is avoided and the diagonal terms of influence matrices are easily determined.
The accuracy and stability of the RMM are verified in numerical experiments of the
Dirichlet, Neumann, and mixed-type problems containing multiple holes. The method is

found to perform pretty well in comparison with the boundary element method.

2.1 Introduction

In recent years, science and engineering communities have paid much attention to the
meshless method in which the element is free. Because of neither domain nor boundary
meshing required for the meshless method, it is very attractive for engineers in modeling.
Therefore, the meshless method becomes promising in solving engineering problems.

The boundary knot method (BKM) [9, 15, 16, 17, 18], boundary particle method [19]
and method of fundamental solutions (MFS) [1, 2, 20] belong to the
boundary-discretization-type meshless methods. The boundary knot method (BKM),
developed in Ref. [9], uses the nonsingular general solution to avoid the fictitious
boundary outside the physical domain in the method of fundamental solution. This idea is

similar to the imaginary-part BEM for eigenproblems by Chen’s group [21].



Consequently, the stability has greatly been improved, especially in handing
multiply-connected problem in the BKM via the dual reciprocity method and the RBF as
in the MFS. In particular, the BKM can produce the symmetric interpolation matrix
which is often important in some problems (e.g., eigenvalue problem). The boundary
particle method [19] is a truly boundary-only meshfree method for inhomogeneous
problems, where the fundamental solution or the general solution is used to evaluate the
homogeneous solution, while the high-order fundamental solution of the Laplace operator
is employed to calculate the particular solution. The method can produce very accurate
results with the boundary nodes for problems whose inhomogeneous function can be well
represented by a polynomial approximation.

The MFS is attributed to Kupradze in 1964 [1] and had been applied to potential [2],
Helmholtz [3, 4, 5], diffusion [6], biharmonic [7] and elasticity problems [8]. In the MFS,
the solution is approximated by a set of fundamental solutions which are expressed in
terms of sources located outside the physical domain. The unknown coefficients in the
linear combination of the fundamental solutions are determined by matching the
boundary condition. The method is relatively easy to implement. It is adaptive in the
sense that it can take into account sharp changes in the solution and in the geometry of
the domain [13, 22] and can easily treat with complex boundary conditions [7]. A survey
of the MFS and related method over the last thirty years can be found in Ref. [2]. The
equivalence between MFS and Trefftz method was proved by Chen et al. [23]. However,
the MFS is still not a popular method because of the debatable artificial boundary
(fictitious boundary) distance of source location in numerical implementation especially
for a complicated geometry. The diagonal coefficients of influence matrices are divergent
in the conventional case when the fictitious boundary approaches the physical boundary.
Despite singularity-free merit, the influence matrices become severely ill-posed when the
fictitious boundary is far away from the real boundary. It results in an ill-posed problem
since the condition number for the influence matrix becomes very large.

Recently, Young et al. [3, 10] developed a modified MFS, namely regularized
meshless method (RMM), to overcome the drawback of MFS for solving the Laplace
equation. The RMM eliminates the perplexing artificial boundary in the MFS, which can

be arbitrary. The subtracting and adding-back technique [3, 10, 11, 12] is implemented to



regularize the singularity and hypersingularity of the kernel functions. This method can
simultaneously distribute the observation and source points on the physical boundary
even using the singular kernels instead of non-singular kernels [14, 24]. The diagonal
terms of the influence matrices can be extracted out by using the proposed technique.
Following the success of [10] for simply-connected-domain problems, this study
makes the first attempt to extend the RMM to the multiply-connected-domain problems
[25, 26]. A general-purpose program is developed to solve the multiply-connected
Laplace problems. The results will be compared with those of the BEM and analytical
solutions. Furthermore, the sensitivity and convergence test will be studied through

several examples to show the validity of our method.

2.2 Governing equation and boundary conditions

Consider a boundary value problem with a potential u(x), which satisfies the Laplace
equation as follows:
Vu(x)=0, xeD, (2-1)
subject to boundary conditions,

u(x)=u, xeB%, p=1 2, 3--, m (2-2)
t(x)=t, xeB, p=1 2, 3, m (2-3)

au(x)

where V? is Laplacian operator, D is the domain of the problem, t(x) = ot m is the
n

X

total number of boundaries including m-1 numbers of inner boundaries and one outer

boundary (the mth boundary), Bg is the essential boundary (Dirichlet boundary) of the
pth boundary in which the potential is prescribed by u and B; is the natural boundary
(Neumann boundary) of the gth boundary in which the flux is prescribed by t. Both Bg

and B; construct the whole boundary of the domain D as shown in Fig. 1-1 (a).



2.3 Review of conventional method of fundamental solutions

By employing the RBF technique [17, 27], the representation of the solution for
multiply-connected problem as shown in Fig. 1-1 (a) can be approximated in terms of the

a; strengths of the singularities at s; as

u(x;) = ZT(SJ, i
N, (2-4)
—ZT(SJ, Xa;+ Y T(s;, X )a; ++ ZT(SJ, ,
j=N;+1 Jj=Ng+Ny+-+Np_+1
t(x,) = ZM(SJ, ,
NN, (2-5)
—ZM(SJ, X)a;+ D M(s), X )a; +---+ ZM(SJ, ,
j=N+1 J=N{+Ny+-+Np 1 +1

where x; and s; represent ith observation point and jth source point, respectively, «;,

are the jth unknown coefficients (strength of the singularity), N,,N,,---,N are the

m-1

numbers of source points on m-1 numbers of inner boundaries, respectively, N_ is the

m
number of source points on the outer boundary, while N is the total numbers of source

6T(sj, X;)

points (N=N,+N,+--+N,) and M(s;,x)=——2">_. The coefficients {“i}?ﬂ

are determined so that BCs are satisfied at the boundary points. The distributions of
source points and observation points are shown in Fig. 1-1 (a) for the MFS. The chosen

bases are the double layer potentials [4, 10, 25] as

T(s;,%)= ((r&’ (2-6)

2006 =), n(% =s)m)  (n, .)

4
7 Ty

M (s, %) = (2-7)

where (,) is the inner product of two vectors, r; is ‘sj - xi‘, n; is the normal vector at

s;, and n, is the normal vector at x, .



It is noted that the double layer potentials have both singularity and hypersingularity at
source position, which lead to the troublesome artificial boundary in the MFS. The
fictitious distance between the fictitious (auxiliary) boundary (B") and the real boundary
(B), defined by d, shown in Fig. 1-1 (a) needs to be chosen deliberately. To overcome

the abovementioned shortcoming, s; is distributed on the physical boundary, shown in

Fig. 1-1 (b), by using the proposed regularized technique as shown in Section 2.4. The
reason for choosing double layer potential instead of the single layer potential as used in
the RMM for the form of RBFs is to take advantage of the regularization of the
subtracting and adding-back technique, so that no fictitious distance is needed when
evaluating the diagonal coefficients of influence matrices which will be elaborated on
later in Section 2.4. The single layer potential can not be chosen because the following
Egs. (2-9), (2-12), (2-15) and (2-18) in Section 2.4 for null equations can not be obtained.
If the single-layer potential is used, the regularization of subtracting and adding-back

technique can not work.

2.4 Regularized meshless method

When the collocation point x; approaches the source point s;, the potentials in Egs.

(2-4) and (2-5) become singular. Egs. (2-4) and (2-5) for multiply-connected problems
need to be regularized by using the regularization of subtracting and adding-back
technique [3, 10, 11, 12] as follows:

Np+--+N,

u(xi'):iT(s},xi')aj+---+ D T(s) X ) +-

Jj=Ng+-+Np_+1

Ny++Npy N
1 1 o I
+ T+ D T(S) X, (2-8)
J=Nj+-+N,+1 Jj=Ng++Ny+1
Ny+-+Np

- DTG X)), X €B,, p=1 2, 3., m-1.

j=Ng+-+Np_ +1
where xi' is located on the inner boundary (p=1, 2, 3,---, m-1) and the superscripts

I and O denote the inward and outward normal vectors, respectively, and



Ny+-+N,

ZT(SJ, x)=0, x' €B,, p=1 2, 3, m-1.

J=Np+ N +1

Therefore, we can obtain

u(x') = ZT(SJ, X o+ + ZT(SJ, |

J=Np 4Ny +1

N1+ +N l+ +Nm1
+ ZT(SJ, XDa;++ D T(s))
j=i+l J=Ni++Nj,+1

+ ZT(SJ' X e, { Nﬁiilq'(sj, x)-T(s' %) e

J=Ng++Ny+1 J=Ng+-+Np_+1

xi €B,, p=1 2, 3, m-1.

(2-9)

(2-10)

When the observation point x° locates on the outer boundary (p=m), Eq. (2-8) becomes

N;+N, Ng++Npyg
u(x°) = ZT(SJ, xVa;+ DTS X))+ DTS, %)
J=N;+1 J=Ng++N, L, +1

+ ZT(SJ, x2)a; - ZT(s,, Xy, x2 ™' eB,,

J=Ni+-+Nj+1 J=Ni+-+Nj+1
where
ZT(SJ, X ) =0, x{ eB,, p=m.
Jj=Ng+-+N 4 +1

Hence, we obtain

N;+N, Nj+-+Np gy
u(x’) = ZT(SJ, xX)ag+ Y T(s,x7)a; +- =3 DT(s %’
Jj=N;+1 J=Ng+-+Npy_,+1
+ ZT(SJ, x2)a; + ZT(SJ, {
J=Ni+-+Nj+1 j=i+l
- ZT(SJ, x)=T(" ) o, X ™ °eB,, p=m.

J=Ng+-+Nj,+1

Similarly, the boundary flux is obtained as

Np+--+Np

t(x') = ZM(SJ, X a +-ee+ ZM(SJ, X )a; +-

J=Ng 4Ny +1

10

p=m.

(2-11)

(2-12)

(2-13)

(2-14)



Ny++Npy

+ D M(s),x e + ZM(SJ, |

J=Ng++Np ,+1 J=Ng++Np 4 +1

Ny+-+Np

- ZM(SJ, x)e, X €B,, p=1 2, 3., m-1.

Jj=Ng++Np_ +1

where

Ny+-+Np

SM(s!,¢)=0, X' €B,, p=1 2, 3, m-1. (2-15)

J=Ng 4Ny +1

Therefore, we obtain

t(x') = ZM(SJ, X o+ + ZM(SJ, |

j=Ng 4Ny +1

Ny++Np Ny +-+Np g
+ ZM(SJ, XDag 4+ D M(s], )
j=i+1 j=Np++Np o +1 (2-16)
Ny+-+Np
+ ZM(SJ,,)O!— ZM(SJ,.) M(s!, %) |
J=Ng 4Ny +1 j=Np++Np +1

Xi €B,, p=1 2, 3, m-1.

When the observation point locates on the outer boundary (p=m), Eq. (2-14) yields

N, +N, Ny ++Npygy
t(x°) = ZM(SJ, xag+ XM+ Y M(s]XO)
Jj=N;+1 j=Ng+-+N,+1
(2-17)
+ ZM(SJ,I)a— ZM(SJ,,)a,, x ™ 'eB,, p=m.
J=Ng++Np,+1 Jj=Ng++N,+1
where
ZM(S]’ i XiI EBp’ p=m. (2_18)
j=Ng++N,+1
Hence, we obtain
N;+N, Ny+-+Np g
t(x°) = ZM(s,, x))a; + Z M(s), x0)a;+-+ > M(s;, ),
j=Ng+1 j=Ng e+ Ny +1
(2-19)

+ ZM(SJ, x*)a, +ZM(3,, ,

J=Ng+-+Ny,+1 j=i+l

11



_|: ZM(SJ' I) M(SI’ |) OandIEBp, p=m.

J=Nj++Nj+1
The detailed derivations of Egs. (2-9), (2-12), (2-15) and (2-18) are given in the reference
[10]. According to the dependence of the normal vectors for inner and outer boundaries

[10], their relationships are

T(SJ’I)_ T(S,a.) e
{T(SJ’ I) T(S]’ |) |=J (2'20)
M(s], ) =M(sP,x0),  i#]
{M(Sw x)=M(Yx), Q=] (2-21)

where the left and right hand sides of the equal sign in Egs.(2-20) and (2-21) denote the
kernels for observation and source points with the inward and outward normal vectors,
respectively.

By using the proposed technique, the singular terms in Egs. (2-4) and (2-5) have been

Ny+Np++Ny
transformed into regular terms ( _[ ZT(SJ’ x)=T(s' o ° x o °)| and

J=N;+Ny+--+Np_;+1

- N1+Z:,T\/I(SJ, x)—M(s' "X O)}) in Egs. (2-10), (2-13), (2-16) and (2-19),

J=Ng N +1

Ny+-+Np

respectively, where p=1, 2, 3,---, m . The terms of ZT(S,,. and

Jj=Ni+-+Np_+1

Ny+--+N,

ZM(SJ, x;) are the adding-back terms and the terms of T(s' * °,x' ® °) and
J=Ng 4Ny +1

M (s ™ °,x' ™ °) are the subtracting terms in the two brackets for reqularization. After

using the above subtracting and adding-back technique [3, 10, 11, 12], we are able to

remove the singularity and hypersingularity of the kernel functions.

12



2.5 Construction of influence matrices for arbitrary domain

problems

By collocating N observation points to match with the BCs from Eqgs. (2-10) and (2-13)

for the Dirichlet problem, the linear algebraic system is obtained

Uz
Un, [Tll]leN1 [Tlm]leNm
GN1+NZ+~-~+Nm_1+1 [Tml]meNl [Tmm]meN
Un
Nx1
where
.
- ZT(S},XI)—T(S;,XI'):| T(s5,%)
j=1
Nl
Ll e ST -
j=1
T(s, ,x,'vl) T(s,, X,LI)
T(Sﬁl+---+Nm,1+17X1|) T(Slc\)ll+---+Nm,1+2’X:|!)
o) I o) I
[T ] _ T (SN1+~~+Nm71+17 XZ) T (SN1+~~+Nm71+2 ' XZ)
im 1™ : :

[Tml] =
T(s,X0)
- zN:T (s), X4
J=Np++ N g+
e

(0] | 0] |
_T (SN1+-»-+Nm,1+l’ XNl) T (SN1+-~-+Nm,1+2 ! XNl)

B I O I O

T (Sl 'XN1+-~-+Nm_1+1) T (SZ ' XN1+-~-+Nm_1+1)
1 O

T(Sl ’XN1+---+Nm

1 O
71+2) T (SZ ’ XN1+---+Nm,1+2)

T(s2,%y)

(¢} o
~~+Nm,1+1) =T (SN1+~~~+NM,1+1' XN1+~~+N,“1+1):| o

(0] o
T(SN1+~~~+NM,1+1' XN )

o

CZNi

m I NxN aN1+N2+-~-+Nm,1+1

ay

T (s, %)

T sy, %)

g {§T<s;,xal>T(sal,xgl)

T(sv.%)
T(sn. %)

(¢] |
T30,

| o

T (SN1 ’ XN1+---+Nm_1+1)
| (0]

T (SNl ’ XN1+~~+Nm,1+2)

T (sy, X0)

o o
T (SN 1 XN1+~~+N,“,1+1)

o o
T (SN 1 XN1+~~-+Nm,1+2)

-

J=Ng++ NG+

For the Neumann problem, Egs. (2-16) and (2-19) yield

13

ZN:T(S},X,'\‘)—T(S

. (2222
Nx1
(2-23)
(2-24)
: (2-25)
N x Ny
(2-26)
XQ)



1 2]
tw, [Mll]leNl [Mlm]leNm ay,
_ : : : . (2-27)
ENy Ny Ny 1L [Mml]NmXNi [Mmm]meNm NN OIN Ny 4t Ny 41
t a
tn N N Nl
in which
. _
St -med )] M sL.x) M st 1)
j=1
N, '
] M(s!, 1) {;Mw;,x;)—ws;,x;)} M (sl 1) (2-29)
. . :
M X, Vst X, - [ZM@;,x'N,)M(s'N,,x'Nl)}
L i=t NN,
(0] | (0] | (0] |
M (SN1+~-~+Nm_1+17 X1 ) M (SN1+~-~+Nm_l+2 ! Xl ) M (SN ! Xl )
M (s9 X)) M(sS X)) M (s, %))
[M " ] — N1+~-~+'Nm,l+1 2 N1+~-~+‘Nm,l+2 2 N 2 , (2_29)
(¢] | (¢] | (e] |
M (SN1+--»+Nm,1+l’ XNI) M (SN1+'”+Nm71+2 ! XN1) M (SN ! XNl) NyxN
B 1,0 1,0 I o]
M (Sl ' XN1+~~~+Nm,1+1) M (52 ' XN1+~~~+Nm,1+1) M (SN1 ' XN1+~~~+Nm,1+1)
| o | o | (0]
[M ]_ M (sl ! XN1+»~+Nm,l+2) M (sz ! XN1+»~+Nm,1+2) M (SN1 ! XN1+»~+Nm,1+2) (2 30)
mil = : : : ' -
M (st x2) M (5}, %) MGk
N
- Z M (S: 'Xll\ll+---+Nm,1+1) -M (Sﬁl+---+Nm,1+1v X31+---+Nm1+1):| M (Sﬁ ’ Xsﬁ---mmq)
L =Ny o+ Ny g+
[M mm]: ’ M (ngxsﬁ--vmm,ﬁz) (2‘31)

M (SR, i1 X0)

:

STM(S! 1)~ M(s2,x)

=Nyt Ny 1

} NppxNpy

For the mixed-type problem, a linear combination of Egs. (2-22) and (2-27) is required to

satisfy the mixed-type BCs. After the unknown densities ({“J}L) are obtained by

solving the linear algebraic equations, the field solution can be solved by using Egs. (2-4)

and (2-5). The solution procedure using the RMM is shown in Fig. 2-1.
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2.6 Numerical examples

In order to show the accuracy and validity of the proposed method, the potential
problems with multiply-connected domain subjected to the Dirichlet, Neumann and

mixed-type BCs are considered.

Case 2-1: Neumann problem

The multiply-connected Neumann problem is shown in Fig. 2-2, and an analytical
solution is
u = r?cos(26) +rsin(é). (2-32)

The node distribution (200 nodes) is shown in Fig. 2-3 and vector plot denotes the

direction of out normal vector. To investigate the error analysis, the norm error is defined
2z
as J'O |uexact(r =1.6,0) —u(r :1.6,6?)|2d6?. The norm error versus the total number N of

source points is plotted in Fig. 2-4 by using the RMM and the BEM, respectively. By

collocating 200 boundary points, we can obtain the convergent result and the norm error

is less than 1072. It is found that the data using BEM and present method agree very well
when the number of nodes is over 400. The potentials along the radius r =1.6 versus
angle are presented in Fig. 2-5 by using the RMM and the BEM, respectively. The RMM

and the BEM results perform pretty well in comparison with the exact solution.

Case 2-2: Mixed-type problem
The mixed-type problem for multiply-connected domain is shown in Fig. 2-6, and an

analytical solution is available as follows:
u=r’cos(36). (2-33)

The node distribution (175 nodes) is shown in Fig. 2-7. The norm error is defined as

15



.[02”|uexact(r=0.5,9)—u(r:0.5,9)|2d9. The norm error of the RMM versus the total

number N of source points by using the RMM and the BEM, respectively, is shown in Fig.
2-8 and the convergent result is found after distributing 200 points. By adopting 200
boundary points, the norm error is less than 10~. The absolute errors of the RMM result

(400 points) in the entire domain are plotted in Fig. 2-9.

Case 2-3: Arbitrary-shape problem

The arbitrary-shape problem with continuous BCs is given in Fig. 2-10 (a). An
analytical solution is available as follows:
u=-e*cos(y). (2-34)
The field potential in Eq. (2-34) is shown in Fig. 2-10 (b). The node distribution (200

nodes) is shown in Fig. 2-11. The norm error is defined as
I02”|uexact(r:0.9,6)—u(r:0.9,49)|2d49. The norm error versus the total number N of

source points is shown in Fig. 2-12 and the convergent result can be found from Fig.
2-12.

2.7 Concluding remarks

In this study, we employed the RMM to solve the Laplace problems with
multiply-connected domain subjected to the Dirichlet, Neumann and mixed-type BCs.
Only the boundary nodes on the real boundary are required. The perplexing fictitious
boundary in the MFS is then circumvented. Despite the presence of singularity and
hypersingularity of double layer potential, the finite values of the diagonal terms of the
influence matrix can be extracted out by employing subtracting and add-back techniques.
The numerical results were obtained by applying the developed program to solve three
problems with different BCs and shapes of domain. The convergent result is found from
the convergent study in the three cases. Numerical results agree very well with the

analytical solutions and those of the BEM.
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Chapter 3
Regularized meshless method for solving
antiplane shear problems with multiple inclusions

Summary

In this chapter, we employ the regularized meshless method (RMM) to solve
antiplane shear problems with multiple inclusions. The solution is represented by a
distribution of double layer potentials. The RMM can regularize singularity by using
subtracting and adding-back technique. Therefore, the troublesome singularity in the
traditional methods is avoided and the diagonal terms of influence matrices are easily
determined. An inclusion problem is decomposed into two parts: one is the exterior
problem for the matrix with holes subjected to remote shear, the other is the interior
problem for each inclusion. The two boundary densities, essential and natural data,
along the interface between the inclusion and matrix satisfy the continuity and
equilibrium conditions. A linear algebraic system is obtained by matching boundary
conditions and interface conditions. Finally, numerical results demonstrate the
accuracy of the present solutions. Good agreements are obtained and compared well

with analytical solutions and Gong’s results.
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3.1 Introduction

Engineering materials always contain some defects in the form of inclusions or
second-phase particles. The distribution of stress in an infinite medium containing
inclusions under antiplane shear has been studied by many investigators [28, 29, 30, 31,
32, 33, 34, 35, 36, 37]. In 1967, Goree and Wilson [28] presented numerical results for
an infinite medium containing two inclusions under remote shear. Besides, Sendeckyj
[29] proposed an iterative scheme for solving problems with multiple inclusions in 1971.
In addition, analytical solutions for two identical holes and inclusions were obtained by
Stief [30] and by Budiansky and Carrier [31], respectively. Zimmerman [32] employed
the Schwartz alternative method for plane problems with two holes or inclusions to
obtain a closed-form solution. In 1992, Honein et al. [33] derived the analytical solution
for two unequal inclusions perfectly bonded to an infinite elastic matrix under
anti-plane shear. The solution was obtained via iterations of Mdbius transformations
involving the complex potential [33]. On the other hand, Bird and Steele [34] used a
Fourier series procedure to revisit the antiplane elasticity problems of Honein et al.s’
paper [33]. For a triangle pattern of three inclusions under antiplane shear, Gong [35]
derived the general solution by employing complex potentials and the Laurent series
expansion method in 1995. Based on the technique of analytical continuity and the
method of successive approximation, Chao and Young [36] studied the stress
concentration on a hole surrounded by two inclusions. Recently, Chen et al. [37] has
successfully solved the anti-plane problem with circular holes and/or inclusions by
using the boundary integral equation in conjunction with degenerate kernel and Fourier

series. To the author’s best knowledge, applications of MFS on this topic were not
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found. This chapter may be the first attempt of MFS on inclusion problems under
antiplane shear. Based on the same algorithm of chapter 2 [38], we focus on inclusion
problems instead of holes in chapter 2.

In this chapter, the RMM is employed to solve antiplane shear problems with
multiple inclusions. An inclusion problem can be decomposed into two parts. One is the
infinite medium with holes and the other is interior problem for each inclusion. After
considering the continuity and equilibrium conditions on the interface, a linear algebraic
system can be obtained. The unknown coefficients in the algebraic system can be
determined. Furthermore, the field potential and stress can be obtained. Finally, a
general-purpose program was developed to solve anti-plane problems with arbitrary
number of inclusions by using the present method without any difficulty. The results
will be compared with analytical solutions [33] and those of analytical continuity and
the Laurent series expansion method [35]. Furthermore, the stress concentration for
various shear modulus ratios will be studied through several examples to show the

validity of our method.

3.2 Governing equation and boundary conditions

Consider inclusions embedded in an infinite matrix as shown in Fig. 3-1. The

inclusions and the matrix have different elastic properties. The matrix is subjected to a

remote antiplane shear, o, = 7. The displacement field of the antiplane deformation is
defined as:

u=v=0, w=w(xYy), (3-1)
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where w is a function of x and y. For a linear elastic body, the stress components

are
oW
= = — 3'2
O,=0,=MU o (3-2)
oW
O_yzzazy:ﬂg’ (3-3)
where g is the shear modulus. The equilibrium equation can be simplified to
0
% + & =0. (3_4)
OX oy
Thus, we have
o*'w o*w  _,
—+—=V’w=0. 3-5
aXZ ayZ ( )

The continuity equilibrium conditions across interface of the matrix-inclusion is

described as

wh=w', (3-6)
w" L ow
" 3-7
* an on 31

where the superscripts i and m denote the inclusion and matrix, respectively. The

loading is remote shear.

3.3 Methods of the solution

3.3.1 Regularized meshless method

The antiplane shear problem with multiple-inclusions is decomposed into two parts as
shown in Fig. 3-2. One is the exterior problem for the matrix with holes subjected to

remote shear and the other is the interior problem for each inclusion. The two boundary
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data between the matrix and inclusion satisfy the continuity and equilibrium conditions
in Egs. (3-6) and (3-7). Furthermore, the exterior problem for the matrix can be
superimposed by two systems as shown in Fig. 3-3. One is the matrix with no hole

subjected to remote shear and the other is the matrix with hole. The representations of
the two solutions for interior problem (w(xi')) and exterior problem (w(xio)) can be
solved by using the RMM in a unified manner as follows:

(1) Interior problem

Following the Eq. (2-10), we obtain

w(x') = ZT(SJ, X o ++ ZT(SJ, |

J=Ng+e+Np +1

Ny+--+Np Ny ++Np g
+ ZT(SJ, XDo ++ D T(s)X) (3-8)
j=i+l j=Nj++Npy ,+1
Ny+-+N,
+ ZT(SJ’ i ZT(SU |) T(S|’ |)
j=Ny++Np 4 +1 j=Np++Np_y+1

Where x| is located on the boundary B, . p denotes the pth boundary.

Similarly, the boundary flux is obtained as

|
MO S (sl )+t SIS )
anxi| =1 j=Np+e N+
Nj+--+Ny Ny++Npy
+ ZM(SJ, Xag++ D M(s;,X) (3-9)
j=i+l Jj=Ng++Nj_,+1
Np+-+Ny
+ ZM(SJ, Na, - ZM(SJ, X)-M(s!,x) |ei, X €B,.
J=Ng+-+Np 4 +1 J=Ng+-+Np_+1

(2) Exterior problem
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When the observation point x° locates on the boundary B,, P denotes pth

boundary, Eqg. (2-13) becomes

w(x®) = ZT(SJ, XO)aj 4o+ ZT(SJ, :

j=Ng++Ny;+1

Ny+-+N, Np+-+Np g
+ ZT(SJ, XO)aj +oee+ ZT(SJ, :
j=i+l j=Np++Np_,+1
(3-10)
Ny++Ny
+ ZT(Sj’ i )a - ZT(S]’ |) T(S| 1A )
J=Ng+-+N,,+1 J=Ng+-+Np_ +1
x* ' eB,.
Similarly, the boundary flux is obtained as
a""(x) ZM(SJ, O+t SMEO)
j=1 Jj=Ng+- +Np1+l
Np+-+N, Np+-+Npy
+ ZM(SJ, e+ Y M), X))
j=i+l j=Np+ N+
(3-11)
Ny+-+N,
+ ZM(S]1 |)a_ ZM(S]7 |) M(S|’ |)
J=Np++Np +1 J=Ng+-+Np_+1
XO or | c B

i p*

3.3.2 Construction of influence coefficients for arbitrary domain
problems

(1) Interior problem (Inclusion)

From Eqgs. (3-8) and (3-9), the linear algebraic system yields

22



where

{iT(s},x{)—T(sl',xl')}

[Tlll]: T(Sll’xé)

T(s1.%,)

_ | | | |
T(SN1+"'+Nm,1+l’ Xl ) T(SN1+"'+Nm71+27 Xl )
| | | |
[T | ]_ T(SN1+"'+Nm,1+l’ X2) T(SN1+"'+Nm71+27 XZ)
IN 1™ : .
| ] | |
_T (SN1+'“+Nm—1+1' XN1) T (SN1+~~+Nm,l+2 J XNl)
B Iyl I
T (Sl ! XN1+--~+Nm,1+1) T (52 ) XN1+--~+Nm,1+1)
| | | |
[T | ]_ T (Sl ' XN1+»--+Nm71+2) T (Sz ’ XN1+»--+Nm71+2)
N1l™ . .
| | | |
T X)) T(sy, %))
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3.3.3 Construction of influence matrices for inclusion problems under
antiplane shear

Substituting Egs. (3-12), (3-13), (3-22) and (3-23) into Egs. (3-6) and (3-7), the

linear algebraic system for the antiplane shear problems can be obtained as:

[l
-Helt

where w”* denotes the out-of-plane elastic displacement at infinity. After Eq. (3-32)

ol
|

] ]

are solved by using the linear algebra solver, the unknown densities ({a‘} and {am})

are obtained and the field solution can be solved by using Eq. (2-4). To provide a simple
illustration of how the proposed meshless method works, the solution procedure is listed

in Fig. 3-4.

3.4 Numerical examples

In order to show the accuracy and validity of the proposed method, the antiplane
shear problems with multiple inclusions subjected to the remote shear are considered.
Numerical examples containing two and three inclusions under the antiplane shear,
respectively, are considered. The numerical results will be compared with analytical

solutions [33] and those of the Laurent series expansion method [35], respectively.

Case 3-1: Two inclusions
The antiplane problem with matrix imbedded two inclusions is sketched in Fig. 3-5.

The smaller inclusion is centered at the origin of radius r, and the larger inclusion of
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radius r,=2r, is centered on the y axis at r+r,+d (d=0.1r ). Stress

concentrations along the boundaries of both the matrix and the smaller inclusion with
2 2 13 N
=10 Nm*“, g, =10, ,ulZEIuO and u, :7y0 are plotted in Fig. 3-6 (a)~(d) ,

respectively by using 720 nodes. The results are compared well with analytical solutions.
From Fig. 3-6 (a) and (b), both figures show the equilibrium traction along the interface
between matrix and smaller inclusion. After comparing with Fig. 3-6 (c) and (d), the
maximum stress concentration appears in =0 as expected. The absolute error of
stress concentration along the interface of the smaller inclusion are plotted in Fig. 3-7 (a)

and (b).

Case 3-2: Three inclusions

A matrix imbedded three inclusions under antiplane shear is considered as shown in

Fig. 3-8. The geometry condition is d =2r,. The stress concentration o, in the

matrix around the interface of the left inclusion is evaluated as shown in Fig. 3-9 (a)~(d),
respectively, by using 1020 nodes. From Fig. 3-9 (a), it is obvious that the limiting case
of holes (g4 / 1y = 1, | pty = 1131/ 11, =0.0) leads to the maximum stress concentration at
¢ =0°. Due to the interaction effects, it is larger 2 than single hole [33]. The stress
component o,, Vvanishes in the case of more rigid inclusions
(! g = 1o | 1y = 1151 14, =5.0), which can be explained by a general analogy between
solutions for traction-free holes and those involving rigid inclusions [30]. The results
are well compared with those of the Laurent series expansion method [35]. The absolute
errors of stress concentration along the interface of the left inclusion for various shear

modulus ratios are shown in Fig. 3-10 (a)~(b).
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3.5 Concluding remarks

In this chapter, we extended the RMM approach to solve for antiplane shear problems
with multiple inclusions. Only boundary nodes on the real boundary are required. The
major difficulty of the coincidence of the source and collocation points in the
conventional MFS is then circumvented. Furthermore, the controversy of the fictitious
boundary outside the physical domain by using the conventional MFS no longer exists.
Although it results in the singularity and hypersingularity due to the use of double-layer
potentials, the finite values of the diagonal terms for the influence matrices have been
extracted out by employing the regularization technique. The numerical results by
applying the developed program agreed very well with the analytical solution and those

of the Laurent series expansion method.
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Chapter 4

Regularized meshless method for solving
antiplane piezoelectricity problems with
multiple inclusions

Summary

In this chapter, we employ the regularized meshless method (RMM) to solve
antiplane piezoelectricity problems with multiple inclusions. The solution is
represented by a distribution of double layer potentials. The troublesome singularity
in the MFS is avoided and the diagonal terms of influence matrices are determined by
using subtracting and adding-back technique. The coupled piezoelectricity system can
be decomposed into two potential problems. One is an out-of-plane displacement
potential field w(x,y), the other is an in-plane electric potential field #(x,y). The
solutions of two potential problems are represented by using the RMM, respectively.
After matching interface conditions, the linear algebraic system is obtained. Finally,
the numerical results demonstrate the accuracy of the solutions after comparing with
analytical solutions and those of the method of successive approximations. Good

agreements are obtained.

4.1 Introduction

In recent years, the development of piezoelectric materials or structures has been

made by the research community. It is well known that piezoelectric materials
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undergo deformation when subjected to an electric field and displacement potential
field. Bleustein (1968) [39] investigated the antiplane piezoelectric dynamics problem
and discovered the existence of Bleustein wave. Pak (1992) [40] has considered a
more general case by introducing a piezoelectric inclusion which, in the limiting case
of vanishing elastic and piezoelectric constants, become a permeable hole containing
free space with electric fields. He obtained an analytical solution by using the
alternative method. Later, Honein et al. (1995) [41] have visited the problem of two
circular piezoelectric fibers subjected to out-of-plane displacement and in-plane
electric field. On the other hand, Chung and Ting (1996) [42] has used basic solution
[43] approach for solving the problem of an elliptic hole in a solid of anisotropic
material. Zhong and Meguid [44] employed the complex variable method to treat the
partially-debonded circular inhomogeneity problems in materials under antiplane
shear and inplane electric field. In 1997, Chen and Chiang [45] solved for 2D
problems of an infinite piezoelectric medium containing a solitary cavity or rigid
inclusion of arbitrary shape, subjected to a coupled anti-plane mechanical and
in-plane electric load at the matrix by using the conformal mapping techniques. In
recent years, Chao and Chang [46] studied the stress concentration and tangential
stress distribution on double piezoelectricity inclusions by using the complex variable
theory and the method of successive approximations. Wu et al. [47] employ
conformal mapping and the theorem of analytic continuation for solving the problem
of two piezoelectric circular cylindrical inclusions in the infinite piezoelectric medium.
To the author’s best knowledge, no investigators have solved this problem by using
MFS. The first attempt of using MFS to solve piezoelectric inclusion problem under
anti-plane load and in-plane electric load will be tried. Based on the same algorithm
of Chapter 3, we focus on piezoelectricity problems with inclusions.

In this chapter, the RMM is extended to solve antiplane piezoelectric problems with
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multiple piezoelectric inclusions. A general-purpose program was developed to solve
antiplane piezoelectric problems with arbitrary number of inclusions. The results are
compared with analytical solutions and those by using the method of successive
approximations [46]. Furthermore, the tangential electric field distribution and stress
concentration for different ratios of piezoelectric module will be studied through

several examples to show the validity of our method.

4.2 Governing equation and boundary conditions

Consider piezoelectric inclusions embedded in an infinite domain as shown in

Fig. 4-1. The inclusions and matrix have different material properties. The matrix is

subjected to a remote antiplane shear, o, =7, and a remote inplane electric field,

E, =E.. A uniform electric field can be induced in piezoelectric material by

applying a potential field E=E_.
For this problem, the out-of-plane elastic displacement w and the electric
potential ¢ are only functions of x and y, such that
w=w(x,y), ¢=a(xYy). (4-1)

The equilibrium equations for the stresses and the electric displacements are

oo
Tertar=o
X
oD, oD (4-2)
*+—L=0,
OX oy

where o, and o, are the shear stresses, while D, and D, are the electric

displacements. For linear piezoelectric materials, the constitutive relations are written

as
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Op =Cpl i — elS Ex ,

Oy = C447/zy - elSEy J

(4-3)
D, =€y, +énE

X!
Dy =C57y +811Ey’
in which y, and y, are the shear strains, E, and E, are the electric fields, c,,

is the elastic modulus, e, denotes the piezoelectric modulus and &, represents the

dielectric modulus. The shear strains y,, and y, and the electric fields E, and

E, are obtained by taking gradient of the displacement potential w and the electric

potential ¢ Dby the following relations:

ow ow By By,
==, == g =-2 g-=-2 )
Vi 8X 7zy ay 8X y ay (44)

Substituting Egs. (4-3) and (4-4) into (4-2), we obtain the following governing

equations:

{cMVzw +e,V¢=0

: 4-5
e.V'w—¢,V¢=0 (4-5)

From Eq. (4-5), we can obtain the equations as
Vw=0, V=0, (4-6)

where V? is the Laplacian operator. The continuity conditions across the

matrix-inclusion interface are written as

w=w", o =on, (4-7)
¢'=¢", D,=D, (4-8)

where the superscripts i and m denote the inclusion and material, respectively. The

loading is remote shear.
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4.3 Method of the solution

4.3.1 Regularized meshless method

The antiplane piezoelectricity problem with multiple inclusions is decomposed into
two parts as shown in Fig. 4-2. One is the exterior problem for matrix with holes
subjected to the far-displacement field and far-electric field, the other is the interior
problem for each inclusion. The two boundary data of matrix and inclusion satisfy the
interface conditions in Eqs. (4-7) and (4-8). Furthermore, the exterior problem for
matrix with holes subjected to a far-displacement field and far-electric field can be
superimposed by two systems as shown in Fig. 4-3. One is an infinite domain with no

hole subjected to a far-displacement field and far-electric field, the other is the matrix

with holes. The representations of the two solutions for the interior problem (w(xi')

and ¢(xi')) and exterior problem (w(xio) and ¢(xi°)) are formulated by using the
RMM as follows:

(1) Interior problem

Following Egs. (3-8) and (3-9), we can obtain

u(xi'):iT(s},xi')aj ot iiT(s},xi')aj

j=Ng++Ng+1

Np++N, Nj+4+Npy
+ DY TEL e+ DTS X)a; (4-9)
j=i+l J=Ng++N, ,+1
N N1+~---¢-Np
+ Z:T(S},XiI Ja; — ZT(S},XiI)_T(SiI’XiI) &,
j=Nj+ N+ j=Np+-+Np_y+1
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x' eB, p=1 2, 3,--, m.

[ p

where u(x/) can be denoted as w(x') and ¢(x'), respectively. Similarly, the

boundary flux is obtained as

t(x') = ZM(SJ, X o+ + ZM(SJ, !

J=Ng Ny +1

Np+--+Np Ny++Np g
+ ZM(SJ, XDag+-+ D M(s],%)e;
j=i+l j=Np++Np,+1
Np+-+N,
+ ZM(S]’ |)a - ZM(SJ’ |) M(Sl’ |)
J=Np+ N+ j=Ng+-+Np_y+1

x'eB, p=1 2, 3,---, m.

[ p

au(x')

where t(x')=
(%) an

X

(2) Exterior problem

Following Egs. (3-10) and (3-11), we can obtain

u(x’) = ZT(SJ, XO)or, 4o+ ZT(SJ, ,

J=Ng+ N +1

Np+-+N, Ny+-+Np 4
+ ZT(SJ, Naj++ DTV, X
j=i+1 J=Ng+-+Np o+
Np++N,
+ ZT(SJ, x)a; - ZT(SJ, x)=T(s°,x°) |
J=Ni++Np 4 +1 J=Ng+-+Np_+1

x°“'"eB, p=1 2, 3,---, m.

I p

Similarly, the boundary flux is obtained as
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N, i1
tx) =D M(SP x)aj++ D M(S],x)a;
=

J=Np+ N+

Ny+-+N, Ny++Np

+ ZM(S?,XF)ajJr"'Jr ZM(S?'X?)%
) =Nyt Npy o+
j=i+ J=Ny A AN o+ (4-12)
N Ny++Ny
o OIMEY e - M) =M X0) |,
J=Np 4N +1 j=Np+-+Npy+1

xX°"'eB,, p=1 2, 3, m.

4.3.2 Construction of influence coefficients for problems with
arbitrary domain

Following Egs. (4-9)~(4-12), we can obtain linear algebraic system of the interior
and exterior problems, respectively.

(1) Interior problem (Inclusion)

U o [Tlll] " [TllN ] &

=l il s E i aewor g, (+-13)
Uy ay [Tl\:l] [Tl\:N] ay

L o [M 1|1] [M N ] o

: :[M[: B Pt gew or g, (4-14)
ty ay [Ml{ll] [MI{IN] ay

where the influence matrices, [T'] and [M '], are equal to influence matrices of Egs.

(3-12) and (3-13), respectively.

(2) Exterior problem (Matrix)

U o [Tl(l)] [Tlg] o
. :[TO . - : .

q

=| . , Jew or ¢, (4-15)
Uy ay [TNOl] [TNON] ay
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Y, o [Mlci] [Mlcl)\l] o

= . : , Jew or ¢, (4-16)
ty ay [MSI] [Ml?lN] ay

where the influence matrices [T°] and [M°]| are equal to influence matrices of Eqs.

(3-22) and (3-23), respectively.
4.3.3 Construction of influence matrices for piezoelectricity problems

Substituting Egs. (4-13), (4-14), (4-15) and (4-16) into Eqgs. (4-7) and (4-8), the

linear algebraic system for antiplane piezoelectricity problem can be obtained as:

S ) T T |

0 S {{i -}

i i m avT 8WOC 1T3 0 * ’
Sew] sl Sl Sl (- [ e
) Fie) gl gl W daridied

where w and ¢ denote the out-of-plane elastic displacement and electric potential,

respectively. The unknown densities ({aviv}, {am}, {a;}, {a;”}) in Eq. (4-17) can be

w

obtained by implementing the linear algebraic solver and the stress concentration can
be solved by using Eq. (4-3). To express clearly, the solution procedure is listed in Fig.

4-4.

4.4 Numerical examples

In order to show the accuracy and validity of the proposed method, the antiplane
piezoelectricity problems with multiple inclusions subjected to the remote shear and

the far-electric field are considered. Three examples contain single elastic dielectric
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inclusion, single piezoelectric inclusion and two piezoelectric inclusions under

antiplane shear, respectively.

Case 4-1: Single elastic dielectric inclusion (e, =0) [33, 41]
This case is an elastic dielectric inclusion in elastic dielectric matrix as shown in

Fig. 4-5. There is no piezoelectric coupling, i.e., the electric and mechanical effects

are uncoupled. The shear stress o, along the line &=0 is plotted in Fig. 4-6

(@)~(d), and the result along the line d=x/2 is plotted in Fig. 4-7 (a)~(d),
respectively. When the matrix is stiffer than the inclusion, cj, >c;,, the maximum
stress concentration occurs in the matrix at 4 =0 as shown in Figs. 4-6 and 4-7. On
the contrary, the maximum stress concentration occurs in the matrix at ¢=x/2 for
cjm >C,,. In the single cavity problem under antiplane shear, the maximum stress
concentration is 2 occuring in the matrix of ¢ =0. Fig. 4-6 (b) reduce to Fig. 4 in Ref.

[33]. Good results are well compared with analytical solutions [41].

Case 4-2: Single piezoelectric inclusion [41]
The single piezoelectric inclusion in a piezoelectric matrix is shown in Fig. 4-8.

In this case, the remote shear, shear modulus, piezoelectric modulus, dielectric
modulus and elastic modulus are 7=5x10" Nm? e.=10.0 Cm?
el =g, =1.51x10° Ccv'm™ and cf, =c}, =3.53x10" Nm?, respectively. Stress
concentrations versus different piezoelectric modulus ratio are shown in Fig. 4-9
(a)~(b) for the case of E =-10°V/m. Furthermore, two other cases of E=0 V/m
and E =10°V/m are plotted in Fig. 4-10 (a)~(b) and Fig. 4-11 (a)~(b), respectively.
When E =-10°V/m and e[} /e/. =10 for negative poling direction, the negative

maximum stress concentration occurs in the matrix of =0 as shown in Fig. 4-9 (a).
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However, the positive maximum stress concentration occurs in the matrix of
6@ =12 as shown in Fig. 4-9 (b). Contours of electric potential ¢ and shear stress

m

o, are plotted in Fig. 4-12 (a)~(b), respectively. Good agreement is made after

comparing with the analytical solution [41].

Case 4-3: Two piezoelectric inclusions
Two piezoelectric inclusions in piezoelectric matrix are shown in Fig. 4-13. The

remote loading and material constants are r=5x10" Nm?
ch =ch, =3.53x10"° Nm?, &l=¢g, =151x10° CV'm' and e, =100 Cm?
respectively. Stress concentrations o /7 versus different piezoelectric modulus
ratios are respectively plotted in Fig. 4-14 (a)~(c). On the other hand, stress

concentrations o, /7 versus different piezoelectric modulus ratios are plotted in Fig.

4-15 (a)~(c), respectively. The negative maximum stress concentration occurs in the

matrix of =0 and ﬂ:% as shown in Fig. 4-14 (c) when E =-10°V/m and
el /e, =—10. However, the maximum stress concentration occurs in the matrix at

O=rx/2 and B =rx/2 asshown in Fig. 4-15 (c). When E =10°v/m, e} /e, =-5

and g=x/2, the tangential electric field along the boundaries of the matrix
distribution function of the different ratios d/r, are shown in Fig. 4-16 (a)~(e). It is
interesting to find that the tangential electric field is not continuous at 8 =/2, when
the inclusion approaches another inclusion. Stress concentrations of the different
ratios of d/r, at =0 versus piezoelectric modulus ratio are shown in Fig. 4-17
(@)~(c). It is found that the stress concentration factor becomes larger, when the two
inclusions approach each other inclusion. The results are well compared with those of

the method of successive approximations [46].
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4.5 Concluding remarks

In this study, we employed the RMM to solve piezoelectricity problems with
piezoelectric inclusions under antiplane shear and inplane electric field. Only the
boundary nodes on the physical boundary are required. The major difficulty of the
coincidence of the source and collocation points in the conventional MFS is then
circumvented. Furthermore, the controversy of the fictitious boundary outside the
physical domain by using the conventional MFS no longer exists. Although it results
in the singularity and hypersingularity due to the use of double layer potential, the
finite values of the diagonal terms for the influence matrices have been determined by
employing the regularization technique. The numerical results were obtained by
applying the developed program to solve piezoelectricity problems through three
examples. Numerical results agreed very well with the analytical solution [41] and
those of the method of successive approximations [46]. The first attempt to solve

piezoelectricity problems using MFS was achieved.
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Chapter 5

Regularized meshless method for solving
acoustic eigenproblems with multiply-connected
domain

Summary

In this chapter, we employ the regularized meshless method (RMM) to search for
eigenfrequencies of two-dimension acoustics with multiply-connected domain. The
solution is represented by using the double-layer potentials. The source points can be
located on the real boundary not alike MFS after using the proposed technique to
regularize the singularity and hypersingularity of the kernel functions. The
troublesome singularity in the MFS methods is desingularized and the diagonal terms
of influence matrices are determined by employing the subtracting and adding-back
technique. Spurious eigenvalues are filtered out by using SVD updating term
technique. The accuracy and stability of the RMM are verified through the numerical
experiments of the Dirichlet and Neumann problems for domains with multiple holes.
The method is found to perform pretty well in comparison with analytical solutions
and numerical results of boundary element method, finite element method and the

point-matching method.

5.1 Introduction

For a multiply-connected problem, spurious eigensolutions always appear, even
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when the complex-valued BEM is employed to solve the eigensolutions (Kitahara
[70]; Chen et al. [71]). In Chen et al. [71], the problem of spurious eigensolutions of
the singular and hypersingular BEMs was studied by using circulants for an annular
case and treated by using the Burton & Miller approach in a discrete system. Chen
and Liu [72, 73] studied the spurious and true eigensolutions for a multiply connected
problem by using BIE, BEM and dual BEM. Also, spurious eigensolutions were
examined in the MFS for annular eigenproblems. In this study, we implement a novel
meshless method to solve multiply-connected eigenproblem. Spurious eigenvalues are
extracted out by employing SVD updating term technigue.

Several meshless methods have been reported in the literature, for example, the
domain-based methods of the reproducing kernel method [48], and boundary type
methods of collocation approach [14, 24], the method of fundamental solution (MFS)
approach [1, 2], the meshless local Petrov-Galerkin approach [49], the RBF approach
[22, 23, 24] and the boundary knot method (BKM) etc. Since neither domain nor
boundary meshing is required for the meshless method, it is very attractive for
engineers in modeling. Therefore, the meshless method becomes promising in solving
engineering problems.

In the MFS, the solution is approximated by a set of fundamental solutions of the
governing equations which are expressed in terms of sources located outside the
physical domain. The method is relatively easy to implement. However, the MFS is
still not a popular method because of the debatable artificial boundary (fictitious
boundary) distance of source location in numerical implementation especially for a
complicated geometry. The diagonal coefficients of influence matrices are divergent
in the conventional case when the fictitious boundary approaches the physical
boundary. In spite of its gain of singularity free, the influence matrices become

ill-posed when the fictitious boundary is far away from the real boundary. It results in
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an ill-posed problem since the condition number for the influence matrix becomes
very large.

To distribute singularities on the real boundary, imaginary-part kernel method was
adopted [14]. Later, Chen independently employed nonsingular fundamental solution
to solve PDE using the similar idea [5]. Later, Young et al. [3, 10] proposed the novel
meshless method, namely regularized meshless method (RMM), to deal with 2-D
problems including the Laplace problem and Helmholtz problem of exterior acoustics.

The RMM can be seen as one kind of MFS. The RMM is successful to overcome
the drawback of MFS for solving the Helmholtz equation [3]. The method eliminates
the well-known drawback of equivocal artificial boundary. The subtracting and
adding-back technique [3, 10, 11, 12] can regularize the singularity and
hypersingularity of the kernel functions. This method can simultaneously distribute
the observation and source points on the real boundary even using the singular kernels
instead of non-singular kernels [17, 24]. The diagonal terms of the influence matrices
can be extracted out by using the proposed technique. However, previous paper [3]
were limited to the exterior acoustic problem with a simply-connected domain.

Following the success of previous applications [3], we investigate the
eigenfrequency of interior acoustics with multiply-connected domain by using the
RMM in this chapter. The rationale for choosing double-layer potential as radius basic
function (RBF) instead of the single-layer potential in the RMM is to take the
advantage of the regularization of the subtracting and adding-back technique. A
general-purpose program was developed to solve the multiply-connected
eigenproblems of Laplace operator. True and spurious eigenvalues are found by using
the proposed method. Spurious eigenvalues are filtered out by using SVD updating
term technique. Furthermore, the results will be compared with analytical solutions

and those of BEM, FEM and PM to show the validity of our method.
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5.2 Governing equation and boundary conditions

Consider a eigenproblem with an acoustic pressure field u(x), which satisfies the

Helmholtz equation as follows:
(V2 +k*)u(x)=0, xeD, (5-1)
subject to boundary conditions,

u(x):G:O, XEBg, p=1 2, 3, m (5-2)

t(x)=t=0, xeB!, q=1 2, 3,--, m (5-3)

where V? is the Laplacian operator, k is the wave number, D is the domain of the

problem, t(x)= u()
on

, m is the total number of boundaries including m-1 numbers of

X

inner boundaries and one outer boundary (the mth boundary), Bg is the essential
boundary (Dirichlet boundary) of the pth boundary in which the potential is

prescribed by u and B; is the natural boundary (Neumann boundary) of the gth

boundary in which the flux is prescribed by t. Both Bg and Bg construct the

whole boundary of the domain D as shown in Fig. 1-1 (a).

5.3 Method of the solution

5.3.1 Conventional method of fundamental solutions

By employing the RBF technique [17, 22, 24, 27], the representation of the solution

for multiply-connected problem as shown in Fig. 1-1 (a) can be approximated in terms
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of the «; strengths of the singularity at s; as

u(x) = ZT(S,, i
Ny+N, (5'4)
—ZT(SJ, X)a;+ D T(s;,X)a;++ ZT(SJ, :
J=N;+1 J=N;+Ny++N 5 +1
t(x) = ZM(S,, .
N, Np+N, (5'5)
=z s X)aj+ Y M(s), X )a; +-+ ZM(SJ, :
j=1 j=N;+1 J=Ng+No++Np +1

where X and s; represent the ith observation point and the jth source point,

respectively, «; are the jth unknown coefficients (strength of the singularity),

N,,N,,---,N, , are the numbers of source points on m-1 numbers of inner boundaries,

m-1

respectively, N_ is the number of source points on the outer boundary, while N is

m

the total numbers of source points (N=N,+N,+--+N_ ) and

aT(sJ, X;)
on

Xi

M(s. X.) =

i % . After BCs are satisfied at the boundary points, the coefficients

{a i}L are determined. The distributions of source points and observation points are

shown in Fig. 1-1 (a) for the MFS. The chosen bases are the double-layer potentials [3]

as

T(SJ’ |)_ (l)(k u)M’ (5-6)

(( =3, )1n :((X Sj)’ ni) _ Hl(l)(k )

ij 'J

nk

M (S] J X|) {kH % (k |]) } (5-7)

where (,) is the inner product of two vectors, H{"(kr;) is the second-order Hankel

function of the first kind, ; :‘sj—xi‘, n; is the normal vector at s;, and n_I is the
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normal vector at X .

It is noted that the double layer potentials have both singularity and
hypersingularity when source and field points coincide, which lead to difficulty in the
conventional MFS. The fictitious distance between the fictitious (auxiliary) boundary

(B") and the physical boundary (B ), defined by d, shown in Fig. 1-1 (a) needs to be

chosen deliberately. To overcome the above mentioned shortcoming, s; is

distributed on the real boundary, as shown in Fig. 1-1 (b), by using the proposed

regularized technique as stated in the following Section 5.3.2.
5.3.2 Regularized meshless method

When the collocation point x; approaches the source point s;, the potentials in

Egs. (5-6) and (5-7) are approximated by:

lim T(s,,x)=T(s,,x) =k (5-8)
Xj =S I

ij

2

lim M(Sj, x)=M (sj,xi)+k7i =(2 ykyl?knl _ nk?k)+
i =S ij ij

k2
2
4

(5-9)

by using the limiting form for small arguments and the identities form the generalized

function as shown below [74]

. kr, 2 .

imH® (kr.)=—2+—=—j, .
s ) = (5-10)
imH Ok = &) 4 (5-11)
oo 20 8 7z(krij)2 '

The kernels in Egs. (5-8) and (5-9) have the same singularity order as the Laplace
equation. Therefore, Egs. (5-4) and (5-5) for the multiply-connected domain problems

can be regularized by using the above mentioned regularization of subtracting and
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adding-back technique [3, 10, 11, 12] as follows:

Ny+-+Np

u(x') = ZT(SJ, XDaj+e+ ) T(sh, X a; +-

j=Ng+-+Np_+1

Ng++Npg
+ > T )a;+ ZT(S,,. (5-12)
j=Ng++Np ,+1 J=Ng+-+Nj,+1
Ny+-+Ng

-~ ZT(s,, X))o, x €B,, p=1 2, 3., m-L1.

J=Nj+-+Np_+1
where xiI is located on the inner boundary ( p=1 2, 3,---, m-1) and the

superscripts 1 and O denote the inward and outward normal vectors, respectively,

and
Ny+-+Ng

ZT(s,, x)=0, x' €eB,, p=1 2, 3., m-1. (5-13)

J=Ng N +1

Therefore, we can obtain

u(x') = ZT(SJ, X a4+ ZT(SJ, :

j=Ny++Ng,+1

Ny++N, Nyt +Npg
+ > T(SJ, xDa;+-+ > T(s)X
j=i+l j=Np++Np o +1
(5-14)
Np++Np
+ ZT(SJ, Na; - ZT(SJ, x)-T(s', %) |
J=Ng++N +1 j=Nj+-+Np_+1

x'eB,, p=1 2, 3--, m-1.

1 p

When the observation point x° locates on the outer boundary (p=m), Eq. (5-12)

becomes
Nyg+N, Ny++Npg

u(x°) = ZT(SJ, xag+ Y TS e+ Y T, x0)a; (5-15)
j=Ng+1 j=Ng++Ny ,+1
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+ ZT(SJ, : ZT(SJ, Xa, x*™ ' eB,, p=m.

j=Ng++Nj +1 j=Ng+-+Nj+1
where
ZT(SJ, X )y, =0, x{ €eB,, p=m.
J=Ng++Np 1
Hence, we obtain
Nyg+N, Ny++Npy
u(x®) = ZT(SJ, xNa;+ DTS, X+ D T(s], %’
j=N;+1 J=Ni++N ,+1

+ §:T(g, x")a; + §:T(g, ,

j=Ng+-+Nj +1 j=i+l

- ZT(Sp X)=T(s?, %) |a, X ™°eB,, p=m.

J=Ny++Nj;+1

Similarly, the boundary flux is obtained as

Ny+-+Np

t(x') = ZM(SJ, XDaj++ ] M (s}, X )+

J=Ng++Np +1

Ny+-+Npy
+ D M(s],x)a; + ZM(SJ, |
J=Ng++Np o +1 J=Ng++Np 1 +1
Ny+-+N,

-~ ZM(SJ, X))o, X €B,, p=1 2, 3, m-1.

J=Ng+-+Np_+1

where

Np+-+Ny

ZM(SJ, : , X €B,, p=1 2, 3., m-1.
J=Np+e+Np +1

Therefore, we obtain

t(x') = :E:hﬂ(sj, X o+t :E:hﬂ(sj,,

J=Ng++Np +1

Nyt +N, Np++Npg
+ Y ML X+ Y M(shx)a,
j=i+1 J=Nj+-+Ny,+1
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(5-17)

(5-18)

(5-19)

(5-20)



Ny+-+Ny

fOYME -] M) -M(s! X |

J=Ng++N 3 +1 Jj=Ng+-+Np_+1

x'eB,, p=1 2, 3--, m-1.

1 p

When the observation point locates on the outer boundary (p=m), Eq. (5-18) yields

Ny +Np Ny +Npy

t(x°) = ZM(SJ, e+ Y M)+ Y M(s) )
j=N;+1 Jj=Nj+-+N, ,+1 (5_21)
+ ZM(SJ, X e, — ZM(SJ, | X ™ 'eB,, p=m.
J=Ng++Np,+1 J=Ng++N,+1
where
> M) ) X €B,, p=m. (5-22)
J=Ngj+-+N 1 +1
Hence, we obtain
Ny +Np Ny +Npy
t(x°) = ZM(SJ, e+ Y M)+ Y M(s) )
j=Ny+1 j=Ng++Npy ,+1
+ ZM(SJ’ |)a +ZM(SJ’ i j (5'23)
J=Ng++Np 4 +1 j=i+l

{ ZM(SJ’XI) M(sP,x°) |og, x2™ ' eB,, p=m.

J=Ng+-+Ny +1
The detailed derivations of Egs. (5-13), (5-16), (5-19) and (5-22) can be found in the
reference [3]. According to the dependence of normal vectors for inner and outer

boundaries [10], their relationships are

T(SJ’ ,)_—T(Sl, |) |¢J
{T(SJ' X)=T(s7,x), i=j (5-24)
M) =M(SF ), i ]
{'V'(SJ' X')=M(s],x), i=j (5-25)

where the left and right hand sides of the equal sign in Egs. (5-24) and (5-25) denote

the kernels for observation and source point with the inward and outward normal
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vectors, respectively.

By using the proposed technique, the singular terms in Egs. (5-4) and (5-5) have
Ny +Ny+-+Nj
been transformed into regular terms (—{ ZT(SJ' x)=T(s °°x °°| and
j=Ng+Ny+--+Np_; +1
Ny+--+N,

- ZM(SJ, x')=M(s' o x 0)} in Egs. (5-14), (5-17), (5-20) and (5-23),

j=Ng+- +Np,+1
Ny+-+Np
respectively, where p=1 2, 3,---, m. The terms of ZT(SJ, x) and
j=Ng++Np_+1
Ny+--+N,

ZM(SJ, x') are the adding-back terms and the terms of T(s' ® °,x' ° °) and

J=ENg+ N+

M(s' ™ ©,x ° °) are the subtracting terms in the two brackets for regularization.

After used the above mentioned method of regularization of subtracting and
adding-back technique [3, 74], we are able to remove the singularity and

hypersingularity of the kernel functions.

5.3.3 Construction of influence matrices for problems with arbitrary
domain

By collocated N observation points to match the BCs from Egs. (5-14) and (5-17)

for the Dirichlet problem, the linear algebraic equation is obtained
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bf=0=[rle} =

[fll]leM
0 :

o Fod - Fondn

where

S Te)

(s %)

Fal-

(st %)

T /.0 [
T(SN1+~~+Nm,1+1’X1)
T (O I
T(SN1+---+N,H+1’ XZ)

[Tin]=

T (0 I
_T (SN1+~~+Nm,1+1’ XN1)

[-Flm:lleNm

m INxN

T(s;.x!)

—{Nzlus;.xn—us;,x»}

T(s5.%,)

T (O I
T (SN1+~~+Nm,1+2' X:I.)
T (O I
T (SN1+--~+N,H+2' XZ)

T (0 I
T (SN1+~~+N,,H+2’ XN1)

[T )=

N
I | T (0 (o}
- ZT(SJ ’ XN1+---+Nm,1+1) 7T(SN1+---+N,“,1+1' XN1+---+N,H+1)
J=Ng+ N+

-

[T /ol O Tl O

T (Sl ’ XNl+~~+Nm,1+1) T (SZ ' XN1+"'+Nm4+1)
T (! O T (! O
T (Sl ' XN1+---+N,H+2) T (82 ! XN1+---+Nm,l+2)

T(s5,%3)

T(s!,x3)

T (0 (o]
T (SN1+~~+Nm71+l’ XN )

Nx1

TGy, %)

TSy, %)

' Ny : _
{ZT(SLX'M)T(S'NUX'M)
i

(s 4) |
T(S%.%)

T (0 !
T(SN’XNl)_leN

Tral WO 7
T (SNl ' XN1+~~+Nm,1+1)

T (! o]
T (SN17 XN1+-~-+Nm,1+2)

T(sp,, X5

T(0 O
T(SN ' XN1+---+N,H+1)

. y : B
Col 2T ) =T (s )
J=Np+ Ny g+

For the Neumann problem, Egs. (5-20) and (5-23) yield
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(5-26)
(5-27)
(5-28)
. (5-29)
N, <Ny
(5-30)



t)=l0}=Ma} =

o
[M 11]N1XN1 e [M im ]N1XNm aN1 (5'31)
ob = i : ,
Nx1 [M ml]NmXNl [M mm]meNm NxN aNﬁNzﬁ.*Nmfﬁl
ay
Nx1
in which
{iM(s],xf)—M(s;,xl')} M(sh,x) M (sl x!)
[Mu]: M(Slvxz) —[;M(S],XZ)—M(SZ,XZ)} M(SN,vxz) (5-32)
M(six,) M(s;,%,) {iM(S}.x'NI)—M(s'Nl,x'Nl)
M(SE‘1+"'+Nm—1+1’ Xll) M(Sl?ll+~~+Nm,1+2' X:I!) e M(Sg, X;)
[Min |- M(SN,ing 1) MG %) M(sy %) , (5-33)
_M (S'?‘ﬁ'“*'Nmfﬁl’ X’I\ll) M (S'?‘ﬁ'“*'Nmfﬁz’ X'I\l1) - M (337 Xll\ll)_ N;xN
E(Sll ' X81+W+Nr"’1+l) E(SZI’ X(’\?1+"'+Nm,1+1) o E(S:\ll’ X§1)1+-~~+Nm71+1)
[ﬁml]: M(sl',xﬁlf...mm,ﬁz) M(sz',xﬁlf.._mm?ﬁz) - M(sﬁ,l,xﬁ}%.‘mwz) e
I M (s!, x5) M(s), x9) M (sy,, X5 -
B . ZN:M(SJ!'X'I\“J’“'*NNIH)M(sgﬁ“'*Nm1*1’X31+“'+Nm1+1):| M(SS'XEI+~~+N"\1+1)
bk | o a (5-35)
M(ng+-.-+wm,1+1v XQ) —{ ZM (S; Xy —M(sﬁ X9)
For the mixed-type problem, a linear combination of Egs. (5-26) and (5-31) is

required to satisfy the mixed-type BCs.
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5.3.4 Extraction of the eigenvalues

In order to sort out the eigenvalues, the SVD technique is utilized [5, 22]. We
obtain Egs. (5-26) and (5-31) by used the double-layer potentials approach for the
Dirichlet and Neumann problems, respectively. Form Egs. (5-26) and (5-31), we can

obtain eigenvalues by using the SVD technique as follows:

rl=[o. = [v. (5-36)
M= [og [z Tv, T (5-37)
where the superscript H denotes the transpose and conjugate, ~. and X are
diagonal matrices with diagonal elements of positive or zero singular values and

[CD?J, [CDMJ, [‘Pfj and [‘PMJ are the left and right unitary matrices corresponding

with [ﬂ and [ﬁ] respectively. Thus the minimum singular value of [‘F] or [M]

as a function of k can be utilized to detect the eigenvalue and eigenmodes by using
right unitary vectors. However, spurious eigenvalue are imbedded in those
eigenvalues for multi-domain eigenproblem. Spurious eigenvalue can be extracted out

by SVD updating term techniques as descriptively as next section.
5.3.5 Treatments of spurious eigenvalues

In order to sort out spurious eigenvalues, the SVD updating term is utilized [5,
22]. We can combine Egs. (5-26) and (5-31) by using the SVD updating term as

follows:
[P]{a}{{ﬂp Jit=0 539
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The rank of the matrix [P] must be smaller than 2N to have a spurious mode [22].

By using the SVD technique, the matrix in Eq. (5-38) can be decomposed into

o 0z oJw- o7
[P]{o @M}{o ZM}[O \PJ’ (5-39)

Based on the equivalence between the SVD technique and the least-squares method,
we extract out the spurious eigenvalue by detecting zero singular value for [P]

matrix.

5.3.6 Flowchart of solution procedures

Following the Section 5.3.2 to Section 5.3.5, the flowchart of solution procedures

by using the RMM is shown in Fig. 5-1.

5.4 Numerical examples

In order to show the accuracy and validity of the proposed method, four cases
with simply-connected and multiply-connected domains subjected to the Dirichlet and

Neumann BCs are considered.

Case 5-1: Square problem (simply-connected case)
The length of the square domain is L =1.0. All the boundary conditions are the
Dirichlet type (u=0) as shown in Fig. 5-2. The analytical solution of true

eigenequations [76] for this case is shown below:

K., =/ (M/L)2+(n/L)?*, mn=123, (5-40)

The former five eigenvalues for the Dirichlet BC by using our proposed method is
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shown in Fig. 5-3. The maximum relative error of eigenvalue is 1%. Good agreement
is obtained after comparing with analytical solutions. Since the domain is simply

connected, no spurious eigenvalue is found by using proposed method.

Case 5-2: Annular problem

The inner and outer radii of domain are r,=0.5 and r, =2.0, respectively. All
the boundary conditions are the Dirichlet type (u=0) and Neumann type (t=0) as
shown in Fig. 5-4. The analytical solution of true eigenequations [73] for Dirichlet

and Neumann types, respectively, is shown below:

3 (kr,)Y, (kr,) = J_(kr,)Y, (kr,) = 0, (Dirichlet) (5-41)
3 (ke)Y. (kr,) = 3. (kr,)Y. (k) = 0, (Neumann). (5-42)

The analytical solutions of spurious eigenequations [73] for both types are the same

as:

3 (k) =0. (5-43)
The minimum singular value versus wave number by using our proposed method for
the Dirichlet and Neumann BCs are shown in Figs. 5-5 (a) and (b), respectively. The
maximum relative error of eigenvalue is 3%. Good agreement is obtained after
comparing with analytical solutions. The spurious eigenvalues for Dirichlet and
Neumann problems are found out by employing SVD updating term as shown in Fig.
5-5 (c). From Fig. 5-5 (c), we find that one spurious eigenvalue appear at k, =3.68
(J;1) in the range of 0<k <5. This spurious eigenvalue is found to be the true

eigenvalue of eigenproblem of interior circular of radius 0.5.

Case 5-3: A circular domain with two equal holes [72]

In this case, the eigenvalues were obtained in the Ref. [72] by using the
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point-matching (PM) approach. The radius R of the outer boundary is 1.0 and the
eccentricity e and radius c¢ of the inner circular boundaries are 0.5 and 0.3,
respectively, as shown in Fig. 5-6. All the boundary conditions are the Dirichlet type
(u=0). Numerical data of eigenvalues for RMM, BEM, FEM and PM, are shown in
Table 5-1. In Table 5-1, the (S) and (A) symbols denote the symmetric and
antisymmetric with respect to the x- and y-axis, respectively [15]. It is easy to find
that the mode shapes of RMM, BEM and PM approach matched well. In this case, the
first spurious eigenvalue k, =6.14 is found by comparing with analytical solution
J;'. From Table 5-1, it is found that the former five eigenvalues match well with
those of RMM and BEM. On the other hand, the former five eigenmodes are shown in
Fig. 5-7, respectively, by using the RMM and the BEM approach. The results match

well with the BEM results.

Case 5-4: A circular domain with four equal holes [72]

The radius R of outer boundary domain is 1.0 and the eccentricity e and
radius ¢ of the inner circular boundaries are 0.5 and 0.1, respectively. Dirichlet
problem is considered as shown in Fig. 5-8. The former five eigenvalues by using the
RMM, BEM, FEM and PM are listed in Table 5-2, where the results of PM miss the
eigenvalues of k, and k,. In this case, no spurious eigenvalue is found in the range
of 0<k<6 sine the first spurious eigenvalue is 18.412 (J.'). The eigenvalues of
k, and k, are roots of multiplicity two by finding the second successive zero
singular value in SVD by using RMM and BEM. Besides, the symmetry of the fourth
mode shape by using the point-matching method is quite different with the results of
RMM and BEM. The former five eigenmodes of the RMM and the BEM are shown in
Fig. 5-9. Agreeable results of the RMM are obtained by comparing with the BEM

data.
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5.5 Concluding remarks

In this study, we used the RMM to solve the acoustic eigenproblems with
multiply-connected domain subjected to the Dirichlet and Neumann BCs, respectively.
Only the boundary nodes on the physical boundary are required. The perplexing
fictitious boundary in the MFS is then circumvented. Despite the presence of
singularity and hypersingularity of double layer potentials, the finite values of the
diagonal terms of the influence matrix can be extracted out by employing subtracting
and add-back techniques. Four numerical experiments were performed to demonstrate
not only the occurring mechanism of spurious eigenvalue due to inner boundaries but
also the suppression of the spurious eigenvalue by using SVD techniques of updating
term. The numerical results were obtained by applying the developed program in four
examples of simply-connected and multiply-connected domain subjected to Dirichlet
and Neumann BCs. Numerical results agreed very well with analytical solutions and

those of BEM, FEM and the PM.
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Chapter 6

Conclusions

6.1 Conclusions

Based on the proposed formulation for solving boundary value problems involving

arbitrary boundaries in different branches of engineering applications, some concluding

remarks are itemized as follows:

1.

2.

The present method is a new version of method of fundamental solutions. Only the
boundary nodes on the physical boundary are required. Although it results in the
singularity and hypersingularity due to using the double layer potential, the finite
values of the diagonal terms for the influence matrices have been extracted out by
the subtracting and adding-back technique to regularize the singularity and
hypersingularity of the kernel functions. Convergence test and sensitivity study of

the proposed method were also done.

A systematic approach to solve the Laplace and eigenproblems with
multiply-connected domain was proposed successfully in this thesis by using the
regularized meshless method. Problems involving infinite domains with arbitrary
boundaries of inclusion were examined to check the accuracy of the present
formulation for different branches of engineering applications including antiplane
shear problems with multiple inclusions, piezoelectric problems with multiple

inclusions. Eigenproblems with multiply-connected domain as well as
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simply-connected case were also solved.

Stress concentration for an infinite medium with multiple inclusions under
antiplane remote shear was studied by using the present formulation. The
maximum stress concentration appears in the matrix of =0 as expected in the

two inclusions.

The stress concentration for an infinite piezoelectric medium with multiple
inclusions under out-of-plane displacement field and in-plane electric field was
studied by using the present formulation. The stress at the neighbor point becomes
larger as the two inclusions approach each other. To verify our accuracy, our results

are found to match well with the Pak’s and Chao et al.s’ results.

The results of the eigenproblems containing multiply-connected domain show the
superiority of our method over other numerical methods, e.g. boundary element
method, point-matching method and finite element method on the basis of the same
number of degrees of freedom. Spurious eigenvalue is filtered out by using the
technique of SVD updating term. Although our approach can solve eigenproblems
with arbitrary number of holes, one, two and four holes were tested in this thesis.
Since analytical solutions are not always available, our numerical results may
provide a datum for other researchers’ reference. To verify our accuracy, our results

were compared with those of BEM, FEM and PM.

A general-purpose program for solving Laplace problems involving infinite

domain with multiple inclusions and/or several holes of various shapes and
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arbitrary positions was developed. Also, the eigenproblem of multiply-connected
domain as well as simply-connected case can be solved by replacing kernels in the
program. Its possible applications in engineering are very broad, not only limited

on the three topics of our thesis.

6.2 Further research

In this thesis, our the novel meshless method has been applied to solve Laplace and
eigenproblems with multiply-connected domain on three topics of engineering
applications by using the fundamental solutions for boundary densities. However, there

are several interested issues which need further investigations:

1. According to our successful experiences in antiplane shear problems with multiple

inclusions, it is straightforward to extend this concept to antiplane shear problems

with multiple inclusions in an anisotropic medium by using proposed method.

2. According to our successful experiences in two-dimensional problems with

multiple inclusions, it is possible to extend this concept to 3-D cases.

3. Although eigenproblem was solved in this thesis, the possible applications to

exterior acoustics of multiple radiators or scatters deserve further study.
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RMM BEM FEM PM
Eigenvalue
k, 4.50(SS) 4.50(SS) 4.453 4.548(SS)
Kk, 4.56(AS) 4.50(AS) 4512 4.588(AS)
K, 6.40(AA) 6.37(AA) 6.267 6.457(AA)
Kk, 6.40(SA) 6.37(SA) 6.269 6.472(SA)
Ke 7.10(SS) 7.16(SS) 6.930 7.083(SS)

Table 5-1 The former five eigenvalues for a circular domain with two equal holes by

using different approaches.

RMM BEM FEM PM
Eigenvalue
K, 4.50(SS) 4.47(SS) 4.443 4.655(SS)
K, 5.38(AS) 5.37(AS) 5.316 N/A
K, 5.38(SA) 5.37(SA) 5.320 N/A
Kk, 5.55(AA) 5.54(AA) 5.486 5.561(SA)
Ke 5.95(SS) 5.95(SS) 5.884 5.868(SS)

Table 5-2 The former five eigenvalues for a circular domain with four equal holes

by using different approaches.

66




> X
e Source point
A Collocation point ‘\\ el
— Physical boundary e - ;-
-- Fictitious boundary d = off-set distance

Fig. 1-1 (a)

y
Bza or, Bi
s;(r,0)
Br—or B Bg or > X

e Source point B! or B! x. (0, 4)
A Collocation point
—Physical boundary

Fig. 1-1 (b)

Fig. 1-1 The conventional MFS and the RMM for the multiply-connected problems,
(a) Conventional MFS, (b) RMM.
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Regularized meshless method for solvin
multiply-connected-domain problems

v v
Laplace problems Helmholtz problem
(Chapter 2~4) (Chapter 5)
v
Potential problems Antiplane shear problems Piezoelectricity problems acoustic eigenproblems
(Chapter 2) (Chapter 3) (Chapter 4) (Chapter 5)

Conclusions

Chapter 6

Fig. 1-2 The frame of the thesis
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Geometry are given (Egs. (2-2) and (2-3))

A 4

Choose the double-layer potential kernels,
T and M, as RBF (Egs. (2-6) and (2-7))

A 4

Determine the diagonal term of [T] and [M]

x—BL Y, p=1,2,3---m-1 (Egs. (2-10) and (2-16))

\4

Construct the influence matrices [T] and [M ]

A\ 4

Construct the linear algebraic equation

wp=[Tliej. {tj=[M]{a}

Match B.C. to solve for {a}

[T]{e}={u}.[M]{a}={t] (Egs. (2-22)and (2-27))

Obtain {a}

A 4

Find the field solution (Eq. (2-4))

Fig. 2-1 Solution procedures.
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Fig. 2-2 Problem sketch for the case 2-1 (r, =2.0,r,=0.5, r,=0.25 and a=1).
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Fig. 2-3 Nodes distribution (200 nodes) for the case 2-1.
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Fig. 2-4 The norm error along the radius r =1.6 versus the number of nodes for the
case 2-1.
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Fig.2-5 The error analysis for the field solution along the radius r =1.6 by using the
RMM and BEM.
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Fig. 2-6 Problem sketch for the case 2-2 (r, =2.0, r, =0.25 anda=1.0).
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Fig.2-8 The norm error along the radius r = 0.5 versus the number of nodes for the
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Fig. 2-9 Absolute error with the exact solution for the entire domain of the case 2-2
(400 nodes).
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Fig. 2-10 Problem sketch and the exact solution for the case 2-3, (a) problem sketch
r =0.5, (b) the field potential of the exact solution.
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algebraic equation of
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v

Combination of Egs. (3-8), (3-9), (3-10) and
conditions of Egs. (3-6) and (3-7) yields
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) el fe]

(3-11) by matching continuity

— |
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Find the stress conce
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Fig. 3-4 Flowchart of solution
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Fig. 3-6 Stress concentration along the boundaries of both the matrix and the smaller
inclusion, @) o' /7, (b) o) /7,(c) oflz,(d) o,/7.
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Fig. 3-8 Problem sketch of three inclusions under antiplane shear.
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Fig. 4-1 Problem sketch.
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Decompose problem

v v
Exterior problem: Matrix Interior problem: Inclusion
I
v v

The matrix with no hole : Matrix with hole:

subject to far-displacement subject to interface
and far-electric field condition

Establish  the linear Establish  the linear

algebraic equation of
(Egs. (4-11) and (4-12))

algebraic equation of
(Egs. (4-9) and (4-10))

v

Combination of Egs. (4-9), (4-10), (4-11) and (4-12) by matching continuity

conditions of Egs. (4-7) and (4-8) yields

-] ] 0 o ], )

0 0 _[Tzzﬁl] [-|-¢o] {{avl“% _{¢w}

i I S 15 I nsl o ‘An? — @w ﬁ%w
SSafwe] ) S]] {2
RIVE _ei; ) 3_1I1 | 5_1? 0 {am} e @m _5_1”; %w
bl gl gl el el's{an elz{an

Solve {a'}, {a"

ol and {a)

Find the stress concentration
(Eq. (4-3))

Fig. 4-4 Flowchart of solution procedures.
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Fig. 4-5 Problem sketch of elastic dielectric matrix with an inclusion.
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Analytical solution
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RMM
Analytical solution
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xIr
Fig. 4-6 (a)
225
L cm,,/C,= 0.1
RMM

Analytical solution

o ‘%X
,0_25\\\\\\\\\\\\\\\\\\

0 0.5 1 15 2 25 3 3.5
xIr

Fig. 4-6 (c)

15 2 2.5 3 35 4 4.5 5
xIr
Fig. 4-6 (b)
c",,/ci= 0.3
RMM

Analytical solution

15 2 25 3 3.5

xIr

Fig. 4-6 (d)

Fig. 4-6 Stress concentration result along the line at & =0 versus different elastic

modulus ratios for single elastic dielectric inclusion in elastic dielectric matrix, (a)

elastic modulus ratio cj, /c}, =5, (b) elastic modulus ratio c}, /c;, =, (c) elastic

modulus ratio ¢}, /c}, =0.1, (d) elastic modulus ratio cj, /c;, =0.3.



" /C,= 5.0

| o fol = o0
RMM [ “Ruim

1755 - Analytical solution s = ——— Analytical solution
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Fig. 4-7 (a) Fig. 4-7 (b)
2 2
CfClyi= 0.1 L M= 0.3
F RMM RMM
Analytical solution T e et Analytical solution
15 [—
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— - —
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Fig. 4-7 (¢) Fig. 4-7 (d)

Fig. 4-7 Stress concentration result along the line at 8=x/2 versus different
elastic modulus ratios for single elastic dielectric inclusion in elastic dielectric
matrix, (a) elastic modulus ratio cj,/c}, =5, (b) elastic modulus ratio cf,/c,, =,

(c) elastic modulus ratio cj} /c}, = 0.1, (d) elastic modulus ratio cf,/cj, =0.3.
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Fig. 4-8 Problem sketch of single piezoelectric inclusion.
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E=-10°V/m E=-10°V/m
/A& — A— A analytical solution
RMM

L A — A— -\ analytical solution
RMM 4

Mool

o

em el e Jeig
Fig. 4-9 (a) Fig. 4-9 (b)
Fig. 4-9 Stress concentration result of single piezoelectric inclusion in piezoelectric

matrix for different piezoelectric modulus ratios when E =-10°V/m, (a) stress

concentrationat ¢ =0, (b) stress concentrationat =x/2.

E=0.0 V/Im E=0.0 V/Im
/A — A— —/\ analytical solution /& — A— -\ analytical solution
RMM RMM

oMyt
1)
§
o™/t
)
( ‘

emglels emislels

Fig. 4-10 (a) Fig. 4-10 (b)

Fig. 4-10 Stress concentration result of single piezoelectric inclusion in piezoelectric
matrix for different piezoelectric modulus ratios when E =0 V/m, (a) stress

concentration at 8 =0, (b) stress concentrationat &=7x/2.
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E=10° V/Im E=10° V/Im
/A — A— 2\ analytical solution
RMM

/x — A— —/\ analytical solution
RMM

T

y
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_6 ca B

T I R BT
10 8 6 -4 2 0 2 4 6 8 10 00 -8 6 4 2 0 2 4 6 8 10
emy/eg eyl

Fig. 4-11 (a) Fig. 4-11 (b)

Fig. 4-11 Stress concentration result of single piezoelectric inclusion in piezoelectric

matrix for different piezoelectric modulus ratios when E =10°V/m, (a) stress
concentration at 8 =0, (b) stress concentrationat =7/2.

--------- Analytical solution
RMM

Fig. 4-12 (a) Fig. 4-12 (b)

Fig. 4-12 Contours result of single piezoelectric inclusion in piezoelectric matrix, (a)

electric potential ¢, (b) shear stress o).
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Fig. 4-13 Problem sketch of double piezoelectric inclusions.
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6 6 6
E=10° V/m E=0 V/m E= -106 V/m
| A — A— A analysis solution (Pak 1992) L /~x — A— -\ analytical solution (Pak 1992) L /X — A— A analytical solution (Pak 1992)
RMM (d/r,=10., B=n/2) RMM (d/r,=10., p=r/2) RMM (d/r,=10., B=n/2)
41\ —  ___ Chao's result .l ——-——-- Chao's result . ——-——-- Chao's result
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Fig. 4-14 (a) Fig. 4-14 (b) Fig. 4-14 (c)

Fig. 4-14 Stress concentration o, /7 result of double piezoelectric inclusions in piezoelectric matrix for different piezoelectric module ratios and

electric field, () E, =10°V/m, (b) E, =0.0V/m, (c) E, =-10°V/m.
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Fig. 4-15 (a)

o™/t

E=0 V/m
/x — A~ /\ analytical solution (Pak 1992)
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Fig. 4-15 (b)
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em/els

Fig. 4-15 (c)

Fig. 4-15 Stress concentration o, /7 result of double piezoelectric inclusions in piezoelectric matrix for different piezoelectric module ratios

and electric field, (a) E_ =10°V/m, (b) E_ =0.0V/m, (c) E_, =-10°V/m.
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Fig. 4-16 (b)
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Fig. 4-16 (d) Fig. 4-16 (e)

Fig. 4-16 Tangential electric field distribution along the boundaries of first inclusion for different ratios d/r, with g=x/2,(a) d/r, =10.0,

(b) d/r,=1.0,(c) d/r,=0.1,(d) d/r,=0.02,(e) d/r,=0.01.
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Fig. 4-17 Stress concentration for different ratios d/r,

d/r,=0.1.
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piezoelectric constants with =0, (a) d/r,=10.0, (b) d/r,=1.0, (c)
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Geometry are given (Egs. (5-2) and (5-3))

\ 4

Choose the double-layer potential kernel,
T and M, as RBF (Egs. (5-6) and (5-7))

Determine the diagonal term of [‘F] and [V]
x—BL Y p=1,2,3---m-1 (Egs. (5-14) and (5-20))
x— B p=m (Egs. (5-17) and (5-23))

Construct the influence matrices [T] and WJ

|
v
Dirichlet problem
[rl=lo: Iz -
(Eq. (5-36))
|

v

Neumann problem

[M] L S
(Eq. (5-37))

|

SVD detection of eigenvalue

i

Detection of spurious eigenvalues using SVD updating term

ey sl vl

(Eq. (5-39))

- 0
0 @

5.0
0 =

Y. 0

0 ¥

Fig. 5-1 Flowchart of solution procedures.
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Fig. 5-2 Problem sketch for the case 1.
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Fig. 5-3 The first minimum singular value versus wave number.
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Fig. 5-4 Problem sketch for the case 5-2.
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Fig. 5-5 The first minimum singular value versus wave number, (a) The result of
RMM and analytical solution for the Dirichlet BC, (b) The result of RMM and
analytical solution for the Neumann BC, (¢) The result of RMM approach + SVD
updating term.
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Fig. 5-6 Problem sketch for the case 5-3.
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Mode 5

Fig. 5-7 The eigenmode result of the RMM and BEM for the case 5-3.
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Fig. 5-8 Problem sketch for the case 5-4.
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Fig. 5-9 The eigenmode result of the RMM and BEM for the case 5-4.
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