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Abstract 

In this paper, a semi-analytical approach is proposed 

to solve natural frequencies and natural modes for circular 

plates with multiple circular holes by using the indirect 

formulation in conjunction with degenerate kernels and 

Fourier series. All the kernels in the indirect formulation 

are expanded into degenerate form. By uniformly 

collocating points on the boundary, a linear algebraic 

system can be constructed. The direct searching approach 

is adopted to determine the natural frequency through 

singular value decomposition (SVD). After determining 

the unknown Fourier coefficients, the corresponding mode 

shape is obtained by using the indirect boundary integral 

formulations. The results of the annular plate, as a special 

case, are compared with the analytical solution to verify 

the validity of the present method. For the cases of 

circular plates with multiple circular holes, the results are 

also compared with those of finite element method (FEM) 

using ABAQUS. Good accuracy, high rate of convergence 

and computational efficiency are the main features of the 

present method due to the semi-analytical procedure. 

Keywords: semi-analytical approach, boundary integral 

formulation, plate problem, biharmonic equation, circular 

hole, degenerate kernel 

 

1. Introduction 

Circular plates with multiple circular holes are 

widely used in engineering structures [1], e.g. missiles, 

aircraft, etc., either to reduce the weight of the whole 

structure or to increase the range of inspection. These 

holes in the structure usually cause the change of natural 

frequency as well as the decrease of the corresponding 

strength. The comprehension of the associated effects is 

helpful to the work of mechanical design and flight 

control of the structure. As quoted by Leissa [2], the free 

vibrations of circular plates have been of practical and 

academic interest for at least a century and a half. 

Although the results for circular or annular plates are 

available in the literature [1,2,3,4,5,6,7,8]; however, all of 

these publications except [1,6,8] are confined to plates 

with concentric hole. Although a large amount of papers 

on the circular membrane vibration with circular holes 

were published [9], very a few papers on the free vibration 

of plate with several holes can be found. Vibration 

analysis of annular-like plates were solved by using FEM 

[1, 8] to study the effect of eccentricity more than 1500 

elements [8] are required. To propose a semi-analytical 

approach for solving the circular plate with circular holes 

is not trivial and is the main goal of this research. 

In the past, some analytical solutions [3] for natural 

frequencies of the circular or annular plates were obtained. 

Frequency equations are obtained by substituting the 

general solution, satisfied the governing equation of plates, 

into the boundary conditions. These analytic solutions 

were confirmed experimentally but some analytic 

solutions corresponding to the clamped boundary 

condition showed little derivation from the experimental 

results due to the lack of stiffness of the clamped 
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boundary condition in reality. Since an analytical solution 

of natural frequencies requires the solution of special 

functions (e.g. Bessel function and modified Bessel 

function), Vera et al. [4] obtained analytical solutions by 

implementing the same procedure as [3] in the Maple V 

system and pointed out some inaccurate results in [2]. 

Regarding to the circular plate with multiple holes, the 

analytical solution of the natural frequencies and the 

corresponding mode shapes have not so far been solved 

due to the fourth-order partial differential equation and 

complex geometry configurations. 

In the other hand, diverse numerical methods were 

resorted to the solution of plate problems, which include 

finite difference method (FDM), finite element method 

(FEM) and boundary element method (BEM). BEM has 

some advantages in comparison with domain 

discretization methods (FEM, FDM). The main gain is 

that the boundary element method reduces the dimension 

of the original problem by one, thus, the number of the 

introduced unknowns is much less than that of the 

traditional domain type methods. In addition, the domain 

mesh generation is not required, which is generally the 

most difficult and time consuming task. For the BEM 

applications to plate problems, readers may consult with 

the review article [10]. It is noted that improper integrals 

on the boundary should be handled particularly when the 

BEM is used. In the past, many researchers proposed 

several regularization techniques to deal with the 

singularity and hypersingularity. To determine the Cauchy 

principal value (CPV) and the Hadamard principal value 

(HPV) in the singular and hypersingular integrals is a 

critical issue in BEM/BIEM [11,12]. For the plate 

problem, it is more difficult to calculate the principle 

values since the kernels are involved with transcendental 

complex functions. Based on direct boundary integral 

formulation, Chen et al. [6,13] recently proposed 

null-field integral equations in conjunction with 

degenerate kernels and Fourier series to solve boundary 

value problems with circular boundaries. Some 

applications were done in the static stress calculations of 

anti-plane and plate problems. For the indirect BEM, 

Ventsel [14] has solved the static plate problems. In this 

paper, we utilize degenerate kernels and Fourier series to 

solve the plate eigenproblem. The degenerate kernel can 

be derived by expanding the fundamental solution into a 

series form on each side of the circular boundary by 

employing the addition theorem. In reality, addition 

theorems are expansion formulae for the special functions 

(e.g. Bessel function, Legendre functions, spherical 

harmonics, etc.) in a selected coordinate system [15]. 

Therefore, degenerate kernel, namely separable kernel and 

Fourier series, are vital tools to study the circular plate 

with circular holes. 

The purpose of this paper is to propose a 

semi-analytical approach to solve the natural frequencies 

and natural modes of circular plate with multiple circular 

holes by using the indirect boundary integral formulation 

in conjunction with degenerate kernels and Fourier series. 

The indirect formulation by choosing the single-layer and 

double-layer potential is proposed and the fictitious 

density distribution on the boundary is represented by 

using Fourier series in the adaptive coordinate system. A 

linear algebraic system is constructed by uniformly 

locating the collocation points on the boundary. By 

matching the boundary conditions, the determinant of the 

matrix must be zero to obtain the nontrivial eigensolution. 

The direct searching approach [16] is adopted to 

determine the natural frequency by using singular value 

decomposition (SVD). After determining the Fourier 

coefficients, the corresponding mode shape of the circular 

plate with multiple circular holes can be obtained by using 

the indirect boundary integral equations. For the plate 

problem in the polar coordinate system, the slope (bending 

angle), moment and effective shear force in the normal 

and tangential directions for the non-concentric domain 

must be determined with care. Therefore, the technique of 

vector and tensor transformation is adopted to deal with 

the problem for the non-concentric plate. Finally, The 
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analysis result of the annular plate, as our special case, is 

compared with the analytical solution [2,3,4] to verify the 

validity of the present method. The results of the circular 

plate with eccentric circular hole and multiple circular 

holes are compared with those of Khurasia and Rawtani [1] 

and FEM using ABAQUS to demonstrate the generality of 

the proposed method.  

 

2. Problem statement and indirect boundary integral 

formulation 

2.1 Problem statement of plate eigenproblem 

The governing equation for the free flexural vibration 

of a uniform thin plate with randomly distributed circular 

holes as shown in Figure 1 is written as follows: 

Ω∈=∇ xxuxu ),()( 44 λ , (1)

where u is the lateral displacement, , 4 2
0h/Dλ ω ρ= λ  is 

the frequency parameter, ω  is the circular frequency, 

0ρ is the volume density, D is the flexural rigidity 

expressed as 3 2D Eh /12(1-v )=  in terms of the 

Young’s modulus E, the Poisson ratio ν and the plate 

thickness h, and Ω is the domain of the thin plate. 

2.2 Indirect boundary integral formulation 

The kernel function  is the fundamental 

solution which satisfies 

)( xs,U

)(),(),( 44 xsxsUxsU −=−∇ δλ , (2)

where  is the biharmonic operator, 4∇ )( x-sδ  is the 

Dirac-delta function, and s and x are the source and field 

points, respectively. Considering the two singular 

solutions ( )( rY0 λ  and )( rK0 λ , which are the zeroth- 

order of the second-kind Bessel and modified Bessel 

functions, respectively) and two regular solutions 
( )( rJ0 λ and )( rI0 λ , which are the zeroth-order of the 

first-kind Bessel and modified Bessel functions, 

respectively) in the fundamental solution, we have 

))]()((2)()([
8
1),( 00002 riIrKriJrYxsU λλ

π
λλ

λ
+++= (3)

where |  and .  | xsr −≡ 12 −=i
Based on the indirect boundary integral formulation, 

the displacement field of plate vibration can be 

represented by 

∫∫ +=
BB

sdBsxsQsdBsxsPxu )()(),()()(),()( ϕφ , (4)

where ( )x,sP  and ( )xsQ ,  are any two of the four 

kernel functions ( , ,U Θ M and ) which will be 

elaborated on later ; 
V

)(sφ  and )(sψ  are the unknown 

fictitious density distributions on the boundary. U(s,x) is 

the fundamental solution in Eq.(3) and the other three 

kernels, ( , )Θ s x , ( , )M s x  and , can be 

obtained by applying the following operators defined by 

),( xsV

n
K

∂
⋅∂

=⋅Θ
)()(  (5)

2

2
2

M
)()1()()(

n
K

∂
⋅∂

−+⋅∇=⋅ νν  (6)

))](([)1()()( 2
V ⋅

∂
∂

∂
∂

∂
∂

−+⋅∇
∂
∂

=⋅
tntn

K ν (7)

to the kernel ( )xs,U  with respect to the source point, 

where
n∂
∂ and�

t∂
∂ are the normal and tangential 

derivatives, respectively. Since the kernels and 

 can be selected from any two of the four kernels, 

),( xsP

),( xsQ

( )xs,U , ( , )Θ s x , ( , )M s x and , six ( ) 

formulations can be considered. For simplicity, the kernels 

),( xsV 4
2C

( )xs,U  and ( , )Θ s x  are chosen as and 

 in Eq.(4). In addition to the displacement, the 

slope, normal moment and effective shear force can be 

derived by applying the three operators in Eqs.(5), (6) and 

(7) to Eq.(4) with respect to the field point. Then, the 

indirect boundary integral representations of the 

displacement, slop, moment and effect shear force are 

expressed as follows:  

),( xsP
),( xsQ

∫∫ Θ+=
BB

sdBsxssdBsxsUxu )()(),()()(),()( ϕφ  (8)

∫∫ Θ+= sdBsxssdBsxsUx )()(),()()(),()( ϕφθ θθ BB

BB

 (9)

∫∫ Θ+= mm sdBsxssdBsxsUxm )()(),()()(),()( ϕφ (10)
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∫∫ Θ+= vv sdBsxssdBsxsUxv )()(),()()(),()( ϕφ
BB

 (11)

For the clamped case, the lateral displacement  and 

the slope 

( )u x

( )θ x on the boundary are specified to zero. For 

the free case, the normal moment  and effective 

shear force 

( )m x

( )xv  on the boundary are set to zero. 

2.3 Degenerate kernels and Fourier series for the 

fictitious boundary densities 

In the polar coordinate, the field point and source 

point can be expressed as ( φρ , ) and ( θR, ), respectively. 

By employing the separation technique for the source and 

field points, the kernel function  is expanded in 

the series form as follows: 

),( xsU

,)],(cos[

)]}()1()()[(2

)]()()[({
8

1),(
0

2

Rm

RIiRKI

RiJRYJxsU

m
m

mm

m
mmmm

I

<−

−++

+= ∑
∞

=

ρϕθ

λλλρ
π

λλλρε
λ

 (12)

,)],(cos[

)]}()1()()[(2

)]()()[({
8
1),(

0
2

Rm

IiKRI

iJYRJxsU

m
m

mm

m
mmmm

E

≥−

−++

+= ∑
∞

=

ρϕθ

λρλρλ
π

λρλρλε
λ

 (13)

where mε  is the Neumann factor ( mε =1, m=0 ; mε =2, 

m=1,2, … ,∞) and the superscripts “I” and “E” denote the 

interior and exterior cases for  degenerate kernel 

to distinguish 

),( xsU

r < R  and r > R , respectively. The 

other degenerate kernels ( , )Θ s x , , ( , )U s xθ ( , )s xθΘ , 

, ( , )mU s x ( , )m s xΘ ,  and ( , )U s xv ( , )Θ s xv  in the 

indirect boundary integral equations can be obtained by 

applying the operators of Eqs.(5)-(7) to the degenerate 

kernel  in Eqs.(12) and (13) with respect to the 

field point x or source point s. 

),( xsU

In order to fully utilize the geometry of circular 

boundary, the fictitious boundary densities, ( )sφ  and 

( )sψ , can be expanded by employing the Fourier series. 

Therefore we obtain 

B s  , )sincos()(
0

0 ∈++= ∑
∞

=

θθφ mbmaas
m

mm (14)

Bs  ),sincos()(
0

0 ∈++= ∑
∞

=

θθψ mpmpps
m
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where  and  are the Fourier 

coefficients and 
m 0m  m0 p ,p ,b ,a ,a mq

θ  is the polar angle. In the real 

computation, only the finite M terms are used in the 

summation of Eqs. (14) and (15).  

 

3. Adaptive observer system and transformation of 

tensor components 

3.1 Adaptive observer system 

Consider a plate problem with circular boundaries as 

shown in Figure 1. Since the indirect boundary integral 

equations are frame indifferent (i.e. rule of objectivity), 

the origin of the observer system can be adaptively located 

on the center of the corresponding boundary contour 

under integration. Adaptive observer system is chosen to 

fully employ the circular property by expanding the 

kernels into degenerate forms. Figure 2 shows the 

boundary integration for the circular boundaries in the 

adaptive observer system. The dummy variable in the 

circular contour integration is the angle (θ) instead of 

radial coordinate (R). By using the adaptive system, all the 

boundary integrals can be determined analytically free of 

principal value senses. 

3.2 Transformation of tensor components 

Since the calculation of the slope, moment and 

effective shear force are involved in the plate problem, 

potential gradient or higher-order gradient is required to 

calculate carefully. For the non-concentric case, special 

treatment for the potential gradient should be taken care as 

the source and field points locate on different circular 

boundaries. As shown in Figure 3, the angle iφ  of the 

collocation point xi is described in the center of the circle 
under integration and the angle cφ  is described in the 

center of the circle on which collocation point is located. 

According to the transformation of the component of the 

vector Eq.(16) and the tensor Eq.(17), we have 
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The three operators in Eqs.(5)-(7) can be transformed as 

follows:  
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where ic -φφδ = . When the angle cφ  equals to the 

angle iφ or the angle difference δ  equals to zero, Eqs. 

(18)-(20) are simplified to the Eqs.(5)-(7). Considering 
non-concentric cases, the degenerate kernels, , ( , )U s xθ

( , )s xθΘ , ,( , )mU s x ( , )m s xΘ ,  and ( , )U s xv ( , )Θ s xv , 

can be obtained by applying the operators of Eqs.(18)-(20) 

to the degenerate kernel  and ),( xsU ( , )s xΘ  with 

respect to the field point x. 

 

4. Linear algebraic system 

Consider the plate problem with circular domain 

containing H randomly distributed circular holes centered 

at the position vector cj ( 1,2,3, ,j L= L ), (L= 1+ H and 

c1 is the position vector of the outer circular boundary for 

the plate), as shown in Figure 4 in which Rj denotes the 

radius of the jth circular region and Bj is the boundary of 

the jth circular hole. By uniformly collocating the N 

(=2M+1) points on each circular boundary in Eqs.(8)-(11), 

we have 

{ }
1

( ) ( , ) ( ) ( , ) ( ) ( ),
j

L

j
j B

u x U s x s s x s dB s xφ ψ
=
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j

L

j
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=

= + ∈∑ ∫ φ Θ ψ Ω  
(24)

The main gain by using degenerate kernel is that singular 

integrals can be easily determined. The selection of 

interior or exterior degenerate kernel depends 

on  or R Rρ ρ< > , respectively, according to the 

observer system. For the  integral of circular 

boundary, the degenerate kernels of , 
jB

),( xsU ( , )s xΘ , 

, ( , )U s xθ ( , )s xθΘ , , ( , )mU s x ( , )m s xΘ ,  

and 

( , )U s xv

( , )Θ s xv  are utilized while the fictitious boundary 

density ( )sφ  and ( )sψ  along the circular boundary are 

substituted by using the Fourier series of Eqs.(14) and 
(15), respectively. In the  integration, the origin of the 

observer system is adaptively set to collocate at the center 
 to utilize the degenerate kernels and Fourier series. By 

considering the outer circular boundary clamped and inner 

circular boundary free as an example, a linear algebraic 

system can be written due to orthogonal property as 

follows:  

jB
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(25)

where L denotes the number of circular boundaries 

(including inner and outer circular boundaries). For 

brevity, a unified form [ ] (  and ijU 1,2,3, ,i L= L

1,2,3, ,j L= L ) denote the response of  kernel 

at the ith circle point due to the source at the jth circle. 

Otherwise, the same definition is for [

( , )U s x

ijΘ ], [ ijUθ ], [ ij
θΘ ], 

[ ], [ij
mU ij

mΘ ], [ ijUv ] and [ ij
vΘ ] kernels. The sub-vectors 

[ iΦ ] and [ iΨ ] and the sub-matrices of [ ],[ijU ijΘ ], [ ijUθ ], 

[ ij
θΘ ], [ ], [ij

mU ij
mΘ ],[ ijUv ] and [ ij

vΘ ] are defined as 

follows: 
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(29)
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θ
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(34)

where kφ  and kρ ( ) are the kth 

collocation angle and radius of the collocation point on 

each boundary in the observer system and the element of 

the sub-matrices are defined as follows: 

1,2,3, ,k = L N

2

0
( , ) ( , ; , ) cos( ) ( )ij

nC i i i iU U R n Rd         n=0,1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫ L  (35)
2

0
( , ) ( , ; , ) sin( ) ( )ij

nS i i i iU U R n Rd         n=1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫ L  (36)
2

0
( , ) ( , ; , ) cos( ) ( )ij

nC i i i iR n Rd         n=0,1,2, ,M,
π

Θ ρ φ Θ θ ρ φ θ θ= ∫ L  (37)
2

0
( , ) ( , ; , ) sin( ) ( )ij

nS i i i iR n Rd         n=1,2, ,M,
π

Θ ρ φ Θ θ ρ φ θ θ= ∫ L  (38)

2

0
( , ) ( , ; , ) cos( ) ( )ij

,nC i i i iU U R n Rd         n=0,1,2, ,M,
π

θ θρ φ θ ρ φ θ θ= ∫ L (39)
2

0
( , ) ( , ; , ) sin( ) ( )ij

,nS i i i iU U R n Rd         n=1,2, ,M,
π

θ θρ φ θ ρ φ θ θ= ∫ L  (40)
2

0
( , ) ( , ; , ) cos( ) ( )ij

,nC i i i iR n Rd         n=0,1,2, ,M,
π

θ θΘ ρ φ Θ θ ρ φ θ θ= ∫ L (41)
2

0
( , ) ( , ; , ) sin( ) ( )ij

,nS i i i iR n Rd         n=1,2, ,M,
π

θ θΘ ρ φ Θ θ ρ φ θ θ= ∫ L  (42)
2

0
( , ) ( , ; , ) cos( ) ( )ij

m,nC i i m i iU U R n Rd         n=0,1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫ L (43)
2

0
( , ) ( , ; , ) sin( ) ( )ij

m,nS i i m i iU U R n Rd         n=1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫ L  (44)
2

0
( , ) ( , ; , ) cos( ) ( )ij

m,nC i i m i iR n Rd         n=0,1,2, ,M,
π

Θ ρ φ Θ θ ρ φ θ θ= ∫ L (45)
2

0
( , ) ( , ; , ) sin( ) ( )ij

m,nS i i m i iR n Rd         n=1,2, ,M,
π

Θ ρ φ Θ θ ρ φ θ θ= ∫ L  (46)

( , ) ( , ; , ) cos( ) ( ) , , , ,
2π

nC i i i i0
U ρ φ U R θ ρ φ nθ Rdθ n 0 1 2 Mij

v, v         ,= =∫ L (47)

( , ) ( , ; , ) sin( ) ( ) , , ,
2π

nS i i i i0
U ρ φ U R θ ρ φ nθ Rdθ n 1 2 Mij

v, v         ,= =∫ L (48)

( , ) ( , ; , ) cos( ) ( ) , , , ,
2

nC i i i i0
R n Rd n 0 1 2ij

v, v         ,= =∫ L
π

Θ ρ φ Θ θ ρ φ θ θ M (49)

( , ) ( , ; , ) sin( ) ( ) , , ,
2

n i i i i0
R n Rd n 1 2 Mij

v, S v         ,= =∫ L
π

Θ ρ φ Θ θ ρ φ θ θ (50)

where the interior degenerate kernels are used for 1j = , 

2,3, ,i 1, N= L ; otherwise, exterior degenerate kernels 

are used. According to the direct-searching scheme, the 

eigenvalues can be obtained by applying the SVD 

technique to the matrix in the left hand of Eq.(25). Once 

the eigenvalues are obtained, the associated mode shape 

can be obtained by substituting the corresponding 

eigenvectors (i.e. the Fourier series representing the 

fictitious boundary density) into the indirect boundary 

integral representation. The procedure of solution is 

described in a flowchart as shown in Figure 5. 

 

5. Numerical results and discussions 

Case1: A circular plate with an eccentric hole [1] 

A circular plate weakened by an eccentric hole is 

considered. The offset distance e of the eccentric hole is 

0.45m (e/a=0.45) as shown in Figure 6. The former six 

natural frequency parameters using different numbers of 

terms of Fourier series (M) are shown in Figure 7. It 

shows that the number of terms used influences the natural 

frequency parameter as well as the number of mode. Since 

the induced eccentric hole affects the characteristics 

symmetry, some diametric nodes, e.g. the second, the 

fourth and the sixth modes, are lost when insufficient 

terms of Furrier series are used. Figure 8 indicates the 

minimum singular value of the influence matrix versus the 
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frequency parameter λ  using seven terms of Fourier 

series (M=7). The multiplicity is one only due to the 

asymmetry. The FEM model of the ABAQUS used 8217 

elements and 8404 nodes. The former six natural 

frequency parameters and modes by using FEM [1] and 

the present method are shown in Figure 9. The results of 

the present method match well with those of FEM using 

ABAQUS. In the results of Khurasia and Rawtani [1], the 

first mode was not reported while the second and fourth 

modes are lost. A little deviation is also shown in the 

results reported by Khurasia and Rawtani due to the 

coarse mesh. Owing to the lack of stiffness of the clamped 

boundary condition in reality, it is expected that the 

experimental data [1] are less than those obtained by the 

other methods.  

Case2: A circular plate with two holes 

In order to demonstrate the generality of the present 

method, a circular plate with two holes is considered as 

shown in Figure 10. The radii of holes are 0.25m and 

0.15m and the coordinates of the center are (0.5,0) and 

(-0.4,-0.3), respectively, in the coordinate system with 

origin at the center of outer circle. The former five natural 

frequency parameters using different numbers of terms of 

Fourier series (M) is shown in Figure 11. Owning to the 

complex configuration, the fewer terms of Fourier series 

(M=1 or 2) can not approach the second and higher 

natural frequencies of parameters well. Figure 12 shows 

the minimum singular value of the influence matrix versus 

the frequency parameterλ  where the number of Fourier 

series terms M is taken as 7. Figure 13 shows the former 

five natural frequency parameters and modes of FEM 

using ABAQUS and the present method. Good agreement 

between the results of the present method and those of 

ABAQUS is obtained. 

 

6. Concluding remarks 

A semi-analytical approach for solving the natural 

frequencies and natural modes for the circular plate with 

multiple circular holes was proposed. Instead of 

employing the direct formulation, the present method used 

indirect boundary integral equations in conjugation with 

the degenerate kernels and the Fourier series to represent 

the fictitious boundary densities in the adaptive observer 

system. The improper integrals in the indirect BIEs were 

avoided by employing the degenerate kernels and were 

easily calculated through the series sum. The potential 

across the circular boundary was described explicitly from 

the interior and exterior expressions of degenerate kernels. 

The degenerate kernels of the slope, moment and effective 

shear force in the plate eigenproblems have been derived. 

Once the Fourier coefficients of fictitious boundary 

densities have been determined, the corresponding mode 

shape can be obtained by using the indirect boundary 

integral representation. The natural frequencies and 

corresponding mode shapes for the multiply-connected 

plate problems with circular boundaries and multiple 

circular holes have been solved easily and efficiently by 

using the present method in comparison with the available 

exact solutions and FEM results using ABAQUS. 
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Figure 1. Problem statement for an eigenproblem with 

multiple circular holes 

 

 
Figure 2. Adaptive observer system when integrating the 

corresponding circular boundaries 

 

 
Figure 3. Transformation of tensor components 
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Figure 4. Collocation point and boundary contour 

integration in the boundary integral equation 

 Figure 7. Natural frequency parameter versus terms of 

Fourier series for a circular plate with an eccentric hole 
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Figure 8. The minimum singular value versus the 

frequency parameter for a circular plate with one eccentric 

hole 

 

 

Figure 5. Flowchart of the present method 

 

Figure 10. A circular plate with two circular holes in 

clamped-free boundary condition 
 
 
 Figure 6. A circular plate with an eccentric hole in 

clamped-free boundary condition 
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Figure 9. The former six natural frequency parameters and modes of a circular plate with an eccentric hole 

0 1 2 3 4 5 6 7 8 9 10 11
3

3.5

4

4.5

5

5.5

6

6.5

Terms of Fourier series (   )

N
at

ur
al

 f
re

qu
en

cy
 p

ar
am

et
er

 

First  Mode 

Second  Mode 

Third  Mode 

Fourth  Mode 

Fifth  Mode 

M  
Figure 11. Natural frequency parameter versus terms of 

Fourier series for a circular plate with two holes 
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Figure 12. The minimum singular value versus the 

frequency parameter for a circular plate with two holes 

 

 
Figure 13. The former five eigenvalues and eigenmodes of a circular plate with two holes  
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