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For a Helmholtz eigenvalue problem with a multiply connected domain, the bound-
ary integral equation approach as well as the boundary-element method is shown
to yield spurious eigenvalues even if the complex-valued kernel is used. In such a
case, it is found that spurious eigenvalues depend on the geometry of the inner
boundary. Demonstrated as an analytical case, the spurious eigenvalue for a multi-
ply connected problem with its inner boundary as a circle is studied analytically. By
using the degenerate kernels and circulants, an annular case can be studied analyt-
ically in a discrete system and can be treated as a special case. The proof for the
general boundary instead of the circular boundary is also derived. The Burton—Miller
method is employed to eliminate spurious eigenvalues in the multiply connected case.
Moreover, a modified method considering only the real-part formulation is provided.
Five examples are shown to demonstrate that the spurious eigenvalues depend on
the shape of the inner boundary. Good agreement between analytical prediction and
numerical results are found.

Keywords: boundary elements; spurious eigenvalue; degenerate kernel;
circulant; multiply connected problem; Burton—-Miller method

1. Introduction

It is well known that the integral equation approach results in fictitious (irregular)
frequency (or wavenumber) when it is applied to solve exterior acoustic problems
(Gennaretti et al. 1977; Schenck 1968; Schroeder & Wolff 1994; Seybert & Rengara-
jan 1968). The irregular values embedded in the singular (UT) and hypersingular
(LM) integral equations are found to be the associated eigenvalues for the corre-
sponding interior problem with the Dirichlet and Neumann boundary conditions,
respectively (Chen 1998). To overcome this difficulty, Burton & Miller (1971) pro-
posed an approach by adding the product of hypersingular (LM) equation with an
imaginary constant to the singular (UT) equation. The other alternative is the com-
bined Helmholtz interior integral equation formulation (CHIEF) method, which adds
additional constraints by collocating the UT equation on the points in the comple-
mentary domain. The main advantage of the CHIEF method is that a hypersingular
equation is not required. However, the choice of the number of points and their
positions needs special attention.
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For the Helmholtz eigenvalue problem with a simply connected domain, the dual
reciprocity method (DRM) (Silva & Venturini 1988) and the multiple reciprocity
method (MRM) (Kamiya & Andoh 1993; Nowak & Neves 1994; Nowak & Brebbia
1989) have been widely used recently. One advantage of the MRM using the Laplace-
type fundamental solution is that only real-valued computation is used instead of the
MRM using the Helmholtz-type fundamental solution (Itagaki & Brebbia 1993, 1994;
Itagaki et al. 1997). It was found that the MRM is no more than the real part of the
complex-valued formulation (Kamiya et al. 1996). A simplified method using only
real-part (Tai & Shaw 1974) or imaginary-part kernels (De Mey 1976, 1977) has been
presented. Also, Hutchinson (1985, 1988, 1991) replaced the complex-valued kernel
by the real part only to solve the plate and membrane vibration problems. However,
spurious eigenvalues occur when we use either a real-part singular or hypersingular
equation. Mathematically speaking, the origin of spurious modes stems from incor-
rect approximation of the operator. To deal with this problem, the framework of the
dual MRM (Chen et al. 2000a) and the real-part dual boundary-element method
(BEM) (Kuo et al. 2000a) were constructed to filter out spurious eigenvalues. Many
approaches—the residue method (Chen & Wong 1998), the domain partition tech-
nique (Chang et al. 1999), the generalized singular value decomposition (GSVD)
(Kuo et al. 2000¢), singular value decomposition (SVD) updating terms (Chen et
al. 2000b; Golub & VanLoan 1989; Yeih et al. 1999a,b), SVD updating documents
(Chen et al. 1999), the combined Helmholtz exterior integral equation formulation
(CHEEF) method (Chen et al. 2001)—have been successfully applied to deal with
the spurious solution. Based on the real-part formulation or MRM formulation using
the Laplace-type fundamental solution, the spurious solutions were found only in
the simply connected domain problem. However, Tai & Shaw (1974) claimed that
spurious eigenvalues are not present if the complex kernel is employed. However,
this point is only correct for the problem of the simply connected domain. Chang
(1999) pointed out that the spurious solution is also present using the domain parti-
tion technique for the multiply connected problem, even though the complex-valued
BEM was adopted to solve the eigensolution.

In this paper, the eigensolution for the multiply connected domain problem will
be solved by using the complex-valued BEM. The mechanism that occurs for the
spurious eigensolution in the multiply connected domain problem will be studied
analytically and numerically. For the annular domain problem, the degenerate kernels
for the fundamental solution and circulants resulting from circular boundary will be
employed to determine the spurious solution. The factors which dominate the values
of spurious eigenvalues will be discussed. To circumvent the spurious solution, the
Burton—Miller method and its modified form by using only real-part information will
both be used to solve the problem. Several examples will be given to demonstrate
the present formulation. The results will be compared with analytical solutions if
available and those of the finite-element method (FEM) using ABAQUS.

2. Mathematical analysis of the spurious eigenvalues
for a multiply connected domain problem

The governing equation for an acoustic cavity is the Helmholtz equation:

(V2 +EHu(z) =0, zen (2.1)
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Q

Figure 1. Helmholtz eigenvalue problem with a multiply connected domain.

where V2 is the Laplace operator, 2 is the domain of the problem. Here, we con-
sider the problem with a multiply connected region as shown in figure 1. The inner
boundary is circular with radius r;, and the outer boundary is arbitrary and r, must
be larger than 7. For simplicity, the boundary condition is assumed to be Dirichlet
type: @ = 0 on all the boundaries. Based on the dual boundary integral formulation
(Chen & Hong 1999), we have

ou(z) = CPV/
B(s)

at(x) = HPV M. (s,z)u(s)dB(s) — CPV/ L.(s,z)t(s)dB(s), (2.3)
B(s) B(s)

T, (s, 2)u(s) dB(s) —RPV/B( Ul ABG), (22)

where Uc(s,x), Tc(s,x), Le(s, ) and M. (s,x) are the kernel functions as follows,

Uc(s,z) = w (2.4)
To(s,z) = %“Hf)(m)@, (2.5)
Le(s,2) = ”"%HP(M)%—@, (2.6)
M.(s,x) = _;kﬁ {—k‘HQ(IZQ(kT) Yiyining + Hfikr) nml}, (2.7)

in which H, ,(Ll)(k*r) is the nth-order Hankel function of the first kind, r is the distance
between the field point = and source point s, y; = s,—x;, i> = 1, k is the wavenumber,
and n; and f; are the ith components of the normal vectors at s and x, respectively,
RPV, CPV and HPV denote the Riemann principal value, Cauchy principal value
and Hadamard principal value, respectively, ¢(s) = du(s)/dn,, and « depends on the
collocation point (o« = 27 for an interior point, o = 7 for a smooth boundary point,
a = 0 for an exterior point). When the boundary is discretized into 2N constant
elements, the linear algebraic equation can be obtained as follows,

Wijlan xan{tj Yonx1 = [Tijlanxon{u; fanx1, (2.8)

[Lijlanxon{tj Yonx1 = [Mijlanxon{u; banx1, 9)
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where [U;;], [Ti;], [Li;] and [M;;] are the four influence matrices,

U, = RPY / Us(s,2;) dB(s), (2.10)
B;

T, —cpv/ To(s, 2;) dB(s) — wos;, (2.11)
B;

L, —cpv/ L(s,2:) dB(s) + 755, (2.12)
B;

My, = HPV/B M. (s, z;) dB(s), (2.13)

in which {u;} and {t;} are the boundary data of the jth element.

Based on the successful experience of SVD updating terms and updating docu-
ments (Chen et al. 2000a, b; Kuo et al. 2000¢), the spurious eigenvalues appear when
there exists a boundary distribution (1) such that ()[U] = (0) and ()[T] = (0). It
can be expressed in the discrete system by the row vector (1), which satisfies

N
> Uy =0, j=1,...,N, (2.14)
=1
N
> Ty =0, j=1,...,N. (2.15)
=1

When N approaches infinity for the constant element, equations (2.14) and (2.15)
can be extended to continuous system as

N
;%Uzj %/Bj(() {/ Y(x)Uc(s,z)dB(x )] =0, forany Bj;(s), (2.16)

N
;%ng %/Bj(() |:/ Zb 8 x dB( ):| =0, for any Bj(s)7 (2'17)

where the boundary B;(s) can be arbitrarily chosen. The spurious eigenvalues appear
when

/¢ (s,z)dB(xz) =0, for any s, (2.18)

/¢ (s,z)dB(xz) =0, for any s. (2.19)

Equations (2.18) and (2.19) indicate that the null field (u = 0 and ¢ = 0) exists when
the singularity distribution %) is superimposed on the boundary.
Now a multiply connected domain with an inner boundary of a circle is considered

as shown in figure 1. We choose a specific ¢,,(x), n =0,1,2, ..., as follows,
¥, (z) = cos(nd), x on the inner boundary By, (2.20)
U, () =0, 2 on the outer boundary B, (2.21)
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Figure 2. Symbols for the degenerate kernels.
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Figure 3. Decomposition of a multiply connected problem.

Figure 4. Helmholtz eigenvalue problem with an annular domain.
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and the complex degenerate kernels in the dual formulation are

Ul(s,z) = Z 27 Jm (kp) (Yo (kR) — iJ,, (kR)) cos(m (6 — ),
Ud(s,z) = m:;,oo E>p,
Ue(s, o) = Y 47T (kR) (Yo (kp) — i, (kp)) cos(m(6 — ),
m=-00 p> R,
(2.22)
Ti(s,z) = Y 4wk, (kp)(Y;,(kR) —iJ},(kR)) cos(m(6 — ¢)),
Te(s,x) = m:;,oo E>p,
Te(s,x) = Y dwkJ), (kR) (Yo (kp) — i (kp)) cos(m(0 — ¢)),
m=-00 p> R,
(2.23)
Li(s,x) = Y 27k, (kp) (Yo (kR) — i1 (kR)) cos(m(0 — ¢)),
L.(s,z) = m:;,oo E>p,
Le(s,x) = > ankJ (kR)(Y;, (kp) —iJ},(kp)) cos(m(6 — ¢)),
m=-00 p>R,
(2.24)
Mi(s,2) = S k2l (kp) (Vi (k) — i}, (6R)) cos(m(6 — 6),
M.(s,z) = m:;,oo E>p,
Me(s,x) = Y 27k?J, (kR)(Y,,(kp) —iJ), (kp)) cos(m(60 — ¢)),
m=-00 p> R,
(2.25)

where the superscripts ‘i’ and ‘e’ denote the interior point (R > p) and the exterior
point (R < p), respectively, z = (p, ¢) and s = (R, #) in the polar coordinate as shown
in figure 2. Substituting equations (2.20)—(2.23) into (2.18) and (2.19), we have

/¢ (5,2) dB(z) = /BI(T)(CosnG) (51,7 )r1d6’+/ (cos n0) U (3, x)r1 48

B (x)
= w2 I (kr ) {[Yo (k1) + Yy (krg)] — [ (kry) + Jp (krg)] )
(2.26)
/ V()T (s,z)dB(x) = /B ) )(Cosnﬂ) v(s1,2)r1dO + e (cosmb)T,(sg,x)r dO
= w2y (kr){[Y,) (kry) + Y (kro)] —i[J) (kry) + J. (k72)]}
(2.27)

where s; and sy denote inner and outer boundaries, respectively.
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Figure 5. The minimum singular value o1 versus k using different approaches
for the Dirichlet problem (u = 0) with an annular domain.

Comparing equation (2.26) with equation (2.27), we find that the spurious eigen-
equation using the complex-valued singular integral equation (UT formulation) is

Jp(kr) =0, n=0,£1,£2,.... (2.28)
Similarly, we can derive the spurious eigenequation as follows,

J(kry) =0, n=0,+£1,+2 ..., (2.29)

if the hypersingular equation (LM formulation) is used. However, when we use the
fundamental solution, kU, (s, z) + L.(s,z) (Burton-Miller method) or ik[U.(s,z)] +
[L.(s,z)] (modified method), the spurious eigenvalues will be suppressed, since the
spurious eigenequations have no solution for any values of k. According to the above
proof, the spurious eigenvalues depend on the inner boundary. One can understand
that the multiply connected domain problem can be superimposed by two problems,
one interior problem and one exterior problem, as shown in figure 3. The source
which causes the spurious eigenvalues stems from the exterior problem with the
inner boundary, since it is well known that fictitious (spurious) frequency is inherent
in the integral formulation even though the complex kernel (UT or LM equation) is
employed.
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Table 2. Zeros of Bessel functions for J, (k) and J, (k)

1 2 3 4 5
Jo(k) =0 24048 5.5201 8.6537 11.7915 14.9309
Ji(k)=0 3.83171 7.01559 10.17346 13.3237 16.4706
J2(k) =0 5.1356 8.4172 11.6198 14.7960 17.9598
J3(k) =0 6.38016 9.76102 13.0152 16.22346  19.40941
Ji(k) =0 7.58834 11.0647 14.3725 17.6160 20.8269
Js(k) =0 8.77148 12.3386 15.7002 18.9801 22.2178
Jo(k)=0 0 3.83171 7.01559  10.17346  13.3237
Ji(k) =0 1.84118 5.33144 8.53632 11.70600 14.8636
Jo(k) =0 3.05424 6.70713 9.96947 13.17037  16.3475
Ji(k) =0 4.20119 8.01524  11.3459 14.5858 17.7887
Ji(k) =0 531755 9.2824 12.6819 15.9641 19.1960
Ji(k) =0 641562 10.5199 13.9872 17.3128 20.5755

3. Special case, an annular problem

We considered an annular domain problem with the Dirichlet-type boundary condi-
tion as shown in figure 4. The dual boundary integral equations can be derived as
follows:

/B Uc(s,x1)t1(s)dB(s) +/ Uc.(s,x1)ta(s)dB(s) =0, x1on By(ry), (3.1)

B>

/BUC(S,xQ)tl(s)dB(s)vL/ Ud(s,02)ta(s)dB(s) = 0, a5 on Bo(rd)  (32)

and
/B Lc(s,xl)tl(s)dB(s)vL/B Lo(s,21)ta(s)dB(s) = 0, a1 on By(ry)  (3.3)

/B Lc(s,xg)tl(s)dB(s)+/ Lo(s,22)ta(s)dB(s) = 0, a5 on By(r8), (34)

B>

where Bj is the inner circular boundary and B, is the outer circular boundary. The
collocation points of 7] and r; are designed to avoid the source terms in the domain.
Discretizing the interior and exterior circles into 2N constant elements, respectively,
we can obtain the linear algebraic dual equations:

(U1 Uso {h} {0} (
- 3.5)
(U1 Uz anvxan 2] 4y 0 AN x1

(Li; L] {tl} _{0} (3.6)
| L2y L22-4N><4N 2] N 0 AN x1
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Table 3. The first ten eigenvalues and eigenmodes of the Helmholtz eigenvalue problem with an

annular domain by different approaches

eigenvalue mode shape eigenvalue mode shape
mode  (FEM) (FEM) (BEM) (BEM)
1 2.03 2.06
2 2.20 2.23
3 2.20 2.23
4 2.62 2.67
5 2.62 2.67

where the subscripts ‘1’ and ‘2’ in the submatrices of U or L and {u} or {t} vectors
denote the positions of quantities on the inner and outer boundary, respectively.
Based on the circular symmetry, the influence matrices for the discrete system are
found to be circulants with the following forms (Chen et al. 1999; Chen & Kuo 2000;
Davis 1979; Goldberg 1991; Kuo et al. 2000a, b):

Proc. R. Soc. Lond. A (2001)
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(3.7)



Helmholtz eigenvalue problems 2531

Table 3. Cont.

eigenvalue mode shape eigenvalue mode shape
mode (FEM) (FEM) (BEM) (BEM)

3.22

3.22

8 3.71 3.81

9 3.71 3.81

10 4.06 4.18

If the degenerate kernel in equation (2.22) is used, the elements in the matrix [Uy1]
of equation (3.7) can be obtained by

(m+(1/2))A0 _
thy = / UL(R, 0; p, 6)pd0 ~ U (R, 0,0 p, 6)pA,
(m=(1/2))46 m=0,1,2,....2N -1,  (3.8)

where Af = 27 /2N and 6,, = mAS.
By introducing the following bases for circulants, I,

(Con)', (Con)?, .oy (Con )®NH,
we can expand matrix [Uy] into
[Ur1] = uol + ug (Con)' + ua(Con)® + -+ +uan—1(Con) N1, (3.9)

Proc. R. Soc. Lond. A (2001)
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Figure 6. Helmholtz eigenvalue problem with an eccentric domain.

where
[0 1 0]
0 01 0
100 .0 2N x2N

Based on the similar properties for the matrices of [Uy1] and [Cy], we have

)\Z[U“]:qurulal+u2al2+---+u2N,1al2N*1, 1=0,1,2,...,2N =1, (3.11)

where )\Z[U“] and «o; are the eigenvalues for [U] and [Cy], respectively. It is easily
found that the eigenvalues and eigenvectors for the circulants [Cs ] are the roots for
a?N =1, as shown below:

ap=em2N) 1 —0,1,2,...,2N — 1, (3.12)

1

o

2
{¢l } = al 5 (3 13)

2N1J
lal 2N

respectively. Substituting equation (3.12) into equation (3.11), we have

2N-1 aN-1
)\l[Uu] _ Z um(al>m _ Z umeiml(27r/2N)
=0 m=0
2N-1 aN-1
= Z U(ry,0;71,¢)r1 A ™A0 = ) Z Ue(ry,0;71, 0)e™A0AQ. (3.14)
m=0 m=0

Proc. R. Soc. Lond. A (2001)
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Figure 7. The minimum singular value o1 versus k using different approaches
for the Dirichlet problem (u = 0) with an eccentric domain.

Table 4. The first ten eigenvalues of Helmholtz eigenvalue problem with an eccentric domain

1 2 3 4 5 6 7 8 9 10

FEM 1.73 213 245 276 295 330 334 336 3.83 3.84
Chen & Zhou (1992) 1.75 214 247 278 297 333 337 338 3.85 3.87
Burton & Miller (1971) 1.74 2.14 247 278 298 3.33 3.37 3.39 3.87 3.87
modified Burton-Miller 1.75 2.14 247 2.78 298 3.33 3.37 339 387 387

When N approaches infinity, the Riemann sum in equation (3.14) can be transformed
to the following integral:

27
A=, [ U i 0 0 319

By substituting the U' kernel of equation (2.22) into equation (3.15), we have

o0

Al — ) /0%( S Lady(kp) (Ym(kR) - iJm(kR)> cos(m(f — qﬁ)))e“" de

m=—0Q

= 12 Jy(kry) (Y (kry) —iJy(kry)), 1=0,41,42,...,&(N —1),N. (3.16)

Proc. R. Soc. Lond. A (2001)
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Figure 8. Helmholtz eigenvalue problem with an inner circular and outer square domain.

Similarly, we can obtain the eigenvalues for the other influence matrices:

AUl = 220 3 (ke ) (Vi (krg) — iy (kr2)), 1= 0,41,42,...,4£(N — 1), N. (3.17)
AUl — 220 7 (ke ) (Vi (krg) — iy (kr2)), 1= 0,41,42,...,4£(N — 1), N. (3.18)
AUl — 220 7 (ko) (Vi (kry) — iy (kry)), 1= 0,41,42,...,4£(N — 1), N. (3.19)
AEn = 22k T (ke ) (Y (kry) — 3y (kry)), 1= 0,41,42, ..., £(N — 1), N. (3.20)
Azl = 22 ke ) (Y (k) — iy (kre)), 1= 0,4£1,4£2,...,£(N — 1), N. (3.21)
ME = 228 0 (ke ) (Y] (ko) — iJ] (kra)), 1 =0,4£1,42, ..., (N —1), N. (3.22)
AE22l = 228y 7 (ko) (Y] (ko) — iJ] (1)), 1= 0,4£1,42,...,4(N —1), N. (3.23)

In order to calculate the determinant, we can decompose the circulants U;; and
Lij into

U] = [2][U;][2]" (3.24)
[Lij] = [P Li;][2]", (3.25)
where [®] is a unitary matrix composed of {¢l} vectors in equation (3.13) and [&]* is
the conjugate transpose of [®], the elements in the diagonal matrices [U;;] and [L;;]
are the eigenvalues of the [U;;] and [L;;]. Then the determinant of the matrix
{Uu U12}
Ut Us
is
Uin Uiz Uy Uy
det = det |~ - det
‘ {Um U22:| N0y Usy 2] (]
N L4 o Ay ]
=det\5't 5 = ~ 1:V[+1det 8 A[UM] (3.26)

Proc. R. Soc. Lond. A (2001)
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Similarly, we have

Ly L12]
det
‘ {Lm Loy

[L11] [L12]
AN (3.27)

H det

I=—N+1

)\[Lm] )\[L22]

Equations (3.26) and (3.27) can be simplified to

U U N N-1
det ||t 12] =]T\V A 3.28
€ ‘ |:U21 U22 H) l g l ( )

and
detHéi Ll?] H)\L H A (3.29)
where
A= 7T47"17"2Jl(krl)[Jl(krg)Yl(krl) — Jy(kr)) Yy (k)Y (ko) — iJ (kry)], (3.30)
N = 7tk iry J) (kr) [y (ko) Yy (kry) — Jy(kry) Yy (kro)][Y] (ko) — i/ (kry)]. (3.31)

From equations (3.28) and (3.29), we can obtain the possible eigenequations
Ji(kry) =0, Ji(kr)Yi(kry) — Jy(kry)Yi(kry) = 0,

Yi(kry) —iJ (krs)

(
Ji(kr1) =0, Jy(kro)Yi(kry) — Ji(kri)Yi(krs) =0,
Y/ (kry) —iJ'(kry) =0 (LM equation). (3.33)

(UT equation), (3.32)

Comparing equation (3.32) with equation (3.33), we find that the true eigenvalues
occur when J;(kry)Y;(kry) — Jy(kry)Y;(kry) = 0, and the spurious eigenvalues occur
when J;(kr1) = 0 or J/(kr;) = 0, since Yl(krg) — iJ(kry) and Y/ (kry) — iJ'(kr2)
are never zeros for any value of k. Similarly, we can obtain the true eigenequa-
tions without spurious contamination when the fundamental solution is chosen as
ik[U.(s,x)]+ L. (s, x) or using only the real-part kernel, ik[U, (s, z)]+ L.(s,x). Table 1
shows the true and spurious eigenequations occurring in the dlfferent methods using
various fundamental solutions.

4. Numerical examples for Helmholtz eigenvalue problem
with a multiply connected domain

We consider five cases of Helmholtz eigenvalue problems with a multiply connected
domain subjected to the Dirichlet boundary condition. The fundamental solutions we
used are the complex U, (s, z) kernel, complex L.(s,z) kernel, ik[U.(s,z)] + Lc(s, z)
(Burton—Miller method) and ik[U,(s,z)] + L.(s,z) (modified method). The SVD
technique is employed to examine the singularity of the coefficient matrix in order
to find the eigenvalues and eigenmodes.
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Table 5. The first ten eigenvalues and eigenmodes of the Helmholtz eigenvalue problem with an
eccentric domain by different approaches

eigenvalue mode shape eigenvalue mode shape
mode (FEM) (FEM) (BEM) (BEM)

1 1.74 1.74
2 2.13 2.14
3 2.45 2.47
4 2.76 2.78
5 2.95 2.97

Case 1: an annular case. An annular domain is considered in figure 4. The
radii of inner and outer circular boundaries are 0.5 and 2.0, respectively. Figure 5
shows the minimum singular value oy versus k using four approaches: [U.] method
using [U.] kernel, [L.] method using [L.] kernel, real-part Burton-Miller method
using ik[U,| + [L,] kernel, and Burton-Miller method using ik[U.] + [L.]| kernel. We
find that the spurious eigenvalues occur as predicted theoretically when one of the
complex-valued kernels U,(s,z) ([U,] method) or L.(s,z) ([L.] method) is used.
The common dips for the four methods are the true eigenvalues; otherwise, the
dips are spurious. The spurious eigenvalues can be suppressed by using the Burton—
Miller method (ik[U.(s, )] + L.(s,x) method) or modified Burton-Miller method
(ik[U, (s, )] + L.(s,x) method).

When the complex-valued kernel U (s, z) was used, the spurious eigenvalues occur
when k satisfies

Jo(05k) =0, n=0,41,42,...,+(N —1),N. (4.1)
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Table 5. Cont.

eigenvalue mode shape eigenvalue mode shape
mode  (FEM) (FEM) (BEM) (BEM)

6 3.30 3.33
7 3.34 3.37
8 3.36 3.37
9 3.83 3.87
10 3.84 3.87

When the complex-valued kernel L.(s,x) was used, the spurious eigenvalues occur
when k satisfies

J(0.5k) =0, n=0,+1,42...,4(N—1),N. (4.2)

The spurious eigenvalues can be obtained from table 2. The first ten eigenvalues
and eigenmodes using BEM and FEM are shown in table 3. In figure 5, good agree-
ment between analytical prediction and numerical results for spurious eigenvalues is
found.

Case 2: an eccentric case. An eccentric case is considered in figure 6 and the
radii of inner and outer circular boundaries are 0.5 and 2.0, respectively. Figure 7
shows the minimum singular value oy versus k using different approaches. We find
that the spurious eigenvalues occur when one of the complex-valued kernels U,(s, z)
or L.(s,z) was used in a similar way to figure 5. The spurious eigenvalues can be
filtered out by using the ik[U.(s,x)] + L.(s, z) kernel (the Burton-Miller method) or
ik[U,(s,z)] + L,(s,x) kernel (modified Burton-Miller method). The true eigenvalues
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Figure 9. The minimum singular value o1 versus k using different approaches
for the Dirichlet problem (u = 0) with an inner circular and outer square domain.

VZ+kHux) =0

Q

Figure 10. Helmholtz eigenvalue problem with an inner square and outer circular domain.

are compared with the results by using FEM and BEM by Chen & Zhou (1992) in
table 4. The first ten modes by using BEM and FEM are shown in table 5. Since
the complex-valued kernel U,(s, z) was used, the spurious eigenvalues occur when k
satisfies

J,(0.5k) =0, n=0,41,+2,.... (4.3)
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Figure 11. The minimum singular value o1 versus k using different approaches for the Dirichlet
problem (u = 0) with an inner square domain.
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Figure 12. Helmholtz eigenvalue problem with a square domain.
Similarly, the spurious eigenvalues occur when k satisfies
J'(0.5k) =0, n=0,%+1,%2,... (4.4)

if the complex-valued kernel L. (s, z) is adopted. The spurious eigenvalues match very
well the analytical solutions in equations (4.3) and (4.4). The true solutions between
FEM and BEM agree very well.
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Table 6. The first ten eigenvalues and eigenmodes of the Helmholtz eigenvalue problem with an
inner square and outer circular domain (1) by different approaches

eigenvalue mode shape eigenvalue mode shape
mode  (FEM) (FEM) (BEM) (BEM)

1 2.19 2.19
2 2.33 2.33
3 2.33 2.33
4 2.67 2.69
5 2.76 2.76

Case 3: inner circle and outer square. In this case we considered the multiply
connected problem with an inner boundary of a circle and an outer boundary of a
square, as shown in figure 8. In figure 9 we found that the minimum singular value
drops at the positions of the spurious eigenvalues which are the same locations of
cases 1 and 2. This numerical experiment indicates that the spurious eigensolution
is dominated by the inner boundary and is independent of the shape of the outer
boundary, as predicted theoretically.

Case 4: inner square and outer circle (I). A multiply connected domain
composed of an inner square boundary and outer circular boundary is considered
in figure 10. Figure 11 also shows the minimum singular value oy versus k by using
four approaches. The first ten eigenvalues and eigenmodes by BEM and FEM are
shown in table 6. We expect that the position of spurious eigenvalues is associated
with the interior natural frequency with essential or natural homogeneous boundary
conditions. The analytical solution of the eigenvalues for an interior acoustic problem
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Table 6. Cont.

eigenvalue mode shape eigenvalue mode shape
mode  (FEM) (FEM) (BEM) (BEM)

6 3.22 3.24
7 3.22 3.24
8 3.76 3.81
9 3.77 3.81
10 4.32 4.40

with a square domain in figure 12 is

kppn =mV/m2+n2  (m,n=1,2,3,...),

homogeneous essential boundary condition,  (4.5)

kmn =7vVm2+n?2 (m,n=0,1,2,...),

homogeneous natural boundary condition. (4.6)

It is found that one of the expected spurious eigenvalue ki, = 4.44 disappeared in
figure 11 for the numerical experiment. The reason may be the smaller number of
boundary elements. Nevertheless, it does not matter, since all the true eigenvalues
are obtained.

Case 5: inner eccentric square and outer circle (II). A multiply connected
domain composed of an inner square boundary and outer circular boundary is con-
sidered, as shown in figure 13. Figure 14 also shows the minimum singular value o
versus k using four approaches. The first ten eigenvalues and eigenmodes by BEM
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Table 7. The first ten eigenvalues and eigenmodes of the Helmholtz eigenvalue problem with an
annular domain (II) by different approaches

eigenvalue mode shape eigenvalue mode shape
mode  (FEM) (FEM) (BEM) (BEM)

1 1.81 1.81
2 2.20 2.21
3 2.50 2.53
4 2.79 2.83
5 3.07 3.10

and FEM are shown in table 7. We expect that the positions of spurious eigenvalues
are the same with equations (4.5) and (4.6). One of the expected spurious eigenvalues,
k11 = 4.44, also disappeared in figure 14 for the numerical experiment.

5. Conclusions

In this paper, the mathematical analysis has shown that the spurious eigenvalues
occur when either of the complex kernels U.(s, ) or L.(s, ) is used and the positions
of spurious eigenvalues depend on only the shape of inner boundary for the multi-
ply connected problem. The true and spurious eigenvalues for an annular problem
were analytically studied using degenerate kernels and circulants. The mechanism
of the spurious eigensolution for the multiply connected problem is similar to the
fictitious frequency for the exterior problem (Chen 1998; Chen & Kuo 2000). For
the multiply connected problems, the singular formulation (UT equation) results in
spurious eigenvalues which are associated with the interior natural frequency with
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Table 7. Cont.

eigenvalue mode shape eigenvalue mode shape
mode (FEM) (FEM) (BEM) (BEM)

6 3.36 3.42
7 3.40 3.47
8 3.41 3.47
9 3.79 3.90
10 3.85 3.95

1.0
<—P>

V2+ k) u(x)=0

Q

Figure 13. Helmholtz eigenvalue problem with an inner square and outer circular domain.
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Figure 14. The minimum singular value o1 versus k using different approaches for the Dirichlet
problem (u = 0) with an inner square and outer circular domain.

homogeneous essential boundary conditions, while the hypersingular formulation
(LM equation) produces spurious eigenvalues which are associated with the interior
eigenfrequency with homogeneous natural boundary conditions. We have employed
the Burton—Miller method to filter out the spurious eigenvalues successfully and have
also provided a modified Burton—Miller method to eliminate the spurious eigenvalues
more efficiently. Five numerical examples were shown to demonstrate the proposed
methods. The results in the numerical examples are compared with the FEM and
analytical solution. Good agreement can be found.

This article originated from discussions with Dr J. R. Chang and Professor W. D. Yeih, and
we are grateful to them for many suggestions. In addition, we thank Professor H.-K. Hong for
his advice and guidance. Continuing support from the National Science Council, Taiwan, is also
gratefully acknowledged.
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