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The spurious eigenvalues of an annular domain have been veri­ ed for the singular
and hypersingular boundary-element methods (BEMs) and circumvented by using
the Burton{Miller approach. Do they also occur in other formulations: continuous
formulations such as the singular and hypersingular boundary integral equations
(BIEs), the null-­ eld BIEs and the ­ ctitious BIEs, or such discrete formulations as
the null-­ eld BEMs and the ­ ctitious BEMs? For the ten formulations of the multiply
connected problem the study of otherwise the same issues is continued in the present
paper. By using the degenerate kernels and the Fourier series, it is demonstrated
analytically for the six continuous formulations of BIEs that spurious eigensolutions
depend on the geometry of the inner boundary but not on that of the outer boundary.
This conclusion can be extended to the six discrete formulations of BEMs. To ­ lter
out the spurious eigenvalues, the CHIEF (combined Helmholtz integral equation for-
mulation) method is used here instead of the Burton{Miller approach. The optimum
number and appropriate positions of the CHIEF points are also addressed. It is then
shown that, in the null-­ eld and ­ ctitious BEMs, the spurious and true eigenval-
ues can be detected and distinguished by using the singular-value-decomposition-
updating techniques in conjunction with the Fredholm alternative theorem. Illustra-
tive examples show the validity of the proposed methodologies.

Keywords: boundary integral equation; Helmholtz equation; spurious eigenvalue;
degenerate kernel; Fourier series; multiply connected domain

1. Introduction

For the acoustic problem, it is well known that the boundary integral equations
(BIEs) for solving the exterior and interior problems result in ­ ctitious frequen-
cies and spurious eigenvalues, respectively. In the exterior acoustics, to deal with
the ­ ctitious frequency problem, the Burton{Miller method (Burton & Miller 1971)
and the combined Helmholtz interior integral equation formulation (CHIEF) method
(Schenck 1968; Seybert & Rengarajan 1987) have been proposed. The Burton{Miller
method added the hypersingular (LM) equation times the imaginary unit i to the
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singular (UT ) equation, while the CHIEF method imposed additional constraints
by collocating the UT equation at points in the complementary domain. Besides,
Achenbach et al . (1988) employed an o¬-boundary approach to avoid ­ ctitious fre-
quencies as well as singularities. Mathematically speaking, the o¬-boundary approach
originates from the null-­ eld formulation (Martin 1980). Another way to avoid sin-
gularities is the retracted boundary approach employed by Hwang & Chang (1991),
which is a kind of ­ ctitious BEM based on the indirect method.

In the interior eigenproblem of a simply connected domain, the dual reciprocity
method (DRM) (Partridge et al . 1992) and the multiple reciprocity method (MRM)
(Kamiya & Andoh 1993; Nowak & Brebbia 1989; Nowak & Neves 1994) have been
widely used. One advantage of the MRM, which uses the Laplace-type fundamental
solution, is that only real-valued computation is needed (Itagaki & Brebbia 1993,
1994; Itagaki et al . 1997). Therefore, the MRM is indeed no more than the real part of
the complex-valued formulation (Kamiya et al . 1996). Tai & Shaw (1974) and De Mey
(1976, 1977) employed a simpli­ ed method of using either only the real-part or only
the imaginary-part kernels. Hutchinson (1985, 1988, 1991) also employed the real-
part kernels to solve membrane-vibration problems. However, regardless of whether
a real-part singular or hypersingular equation is used, spurious eigenvalues always
occur. To deal with the spurious-eigenvalue problem, the dual MRM (Chen et al .
2000a), the real-part dual BEM (Kuo et al . 2000a), the singular-value-decomposition
(SVD) updating terms (Golub & Van Loan 1989; Berry et al . 1999; Chen et al . 2000b)
and the generalized singular value decomposition (GSVD) (Kuo et al . 2000b) have
been constructed. Also, Chen et al . (2001a) extended the CHIEF concept to the
combined Helmholtz exterior integral equation formulation (CHEEF) method for
­ ltering out the spurious eigenvalues. In fact, there are no spurious eigenvalues if
the complex-valued BEM is employed for a simply connected problem. Tai & Shaw
(1974) claimed that spurious eigenvalues were not present if the complex-valued
kernels were employed. However, all the above issues are true only for the cases of
problems with simply connected domains. In a multiply connected problem, spurious
eigensolutions always appear, even when the complex-valued BEM is employed to
solve the eigensolutions (Kitahara 1985; Chen et al . 2001c). In Chen et al . (2001c),
the problem of spurious eigensolutions of the singular and hypersingular BEMs was
studied by using circulants for an annular case and treated by using the Burton{
Miller approach in a discrete system.

In this paper we not only intend to examine the mechanisms that cause spurious
eigensolutions, but also intend to further examine whether the mechanisms vary with
di¬erent mathematical formulations and numerical methods employed. Sections 2
and 3 solve the complex-valued BIEs for the eigensolutions of an annular domain
as a continuous formulation and study analytically the occurring mechanisms of the
spurious eigensolutions. The degenerate kernels for the fundamental solution and the
Fourier series expansions of boundary densities are employed to ­ nd and distinguish
analytically the spurious and true eigenvalues for the multiply connected problem.
Sections 4 and 5 show that, even being able to avoid singularity, the null-­ eld BIEs
and the ­ ctitious BIEs still yield spurious eigensolutions, and that their occurring
mechanisms are essentially the same as those of the BIEs. Section 6 uses the CHIEF
method to circumvent the problems of spurious eigenvalues for the three continuous
formulations of BIEs, also addressing how to choose the positions and determine
the number of the CHIEF points. The BEM implementations of the singular and

Proc. R. Soc. Lond. A (2003)



Eigensolutions of Helmholtz BIEs and BEMs 1893

hypersingular BIEs, the null-­ eld BIEs and the ­ ctitious BIEs are presented in x 7,
where spurious and true eigenvalues are detected and distinguished by using the
SVD-updating techniques in conjunction with the Fredholm alternative theorem.
Section 8 gives numerical examples and x 9 concludes the paper.

2. Boundary integral equations of spurious and true eigenvalues
for a multiply connected problem

For the acoustic problem, the governing equation is the Helmholtz equation

(r2 + k2)u(x) = 0; x 2 D; (2.1)

where r2 is the Laplace operator, k the wavenumber and D the domain of interest.
On the basis of the dual boundary integral formulation (Hong & Chen 1988; Chen
& Hong 1999), we have

¬ u(x) = CPV

Z

B

T (s; x)u(s) dB(s) ¡ RPV

Z

B

U(s; x)t(s) dB(s); x 2 B; (2.2)

¬ t(x) = HPV

Z

B

M (s; x)u(s) dB(s) ¡ CPV

Z

B

L(s; x)t(s) dB(s); x 2 B; (2.3)

where x is the ­ eld point, s the source point, B the boundary, RPV the Riemann
principal value, CPV the Cauchy principal value, HPV the Hadamard principal value,
t(s) the directional derivative of u(s) along the outer normal direction at s and ¬
the interior angle of the boundary at x. The U(s; x), T (s; x), L(s; x) and M (s; x)
represent the four kernel functions (Chen & Chen 1998),

U (s; x) = ¡ 1
2
i º H(1)

0 (kr); (2.4)

T (s; x) = ¡ 1
2
ikº H (1)

1 (kr)
yini

r
; (2.5)

L(s; x) = 1
2
ikº H (1)

1 (kr)
yi·ni

r
; (2.6)

M (s; x) = ¡ 1
2
ikº

·
¡ k

H(1)
2 (kr)

r2
yiyjni·nj +

H1
1 (kr)

r
ni·ni

¸
; (2.7)

where H
(1)
n (kr) is the nth-order Hankel function of the ­ rst kind, r = jx ¡ sj,

yi = si ¡ xi, i2 = ¡ 1 and ni and ·ni are the ith components of the outer normal
vectors at s and x, respectively. Equation (2.2) is referred to as the singular BIE,
equation (2.3) the hypersingular BIE. The combined use of both is coined the dual
BIEs. Corresponding to (2.2) and (2.3), the null-­ eld BIEs (Martin 1980) based on
the direct method are

0 =

Z

B

T (s; x)u(s) dB(s) ¡
Z

B

U (s; x)t(s) dB(s); x 2 De; (2.8)

0 =

Z

B

M (s; x)u(s) dB(s) ¡
Z

B

L(s; x)t(s) dB(s); x 2 De; (2.9)

where De is the complementary domain and the kernels are the same as listed
in (2.4){(2.7). Note that the null-­ eld BIEs are not singular.
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Figure 1. Sketch of an annular cavity.
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Figure 2. Symbols for the degenerate kernels.

For the purposes of analytical study, we consider an annular case and adopt such
analytical tools as degenerate kernels and Fourier series. Figure 1 shows an annular
cavity with boundary B containing the inner and outer boundaries, B1 and B2,
the radii of which are r1 and r2, respectively. To prepare for the annular case, let
us consider beforehand a circular case, as shown in ­ gure 2, for which the kernel
functions (2.4){(2.7) in the null-­ eld BIEs (2.8) and (2.9) can be expanded into the
following degenerate kernels,

U(s; x) =

8
>>>>>>><

>>>>>>>:

U i(s; x) =

1X

m = ¡1

1
2
º Jm(k» )(Ym(kR) ¡ iJm(kR)) cos(m( ³ ¡ ¿ ));

R > » ;

U e(s; x) =

1X

m = ¡1

1
2
º Jm(kR)(Ym(k» ) ¡ iJm(k» )) cos(m( ³ ¡ ¿ ));

» > R;

(2.10)
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T (s; x) =

8
>>>>>>><

>>>>>>>:

T i(s; x) =

1X

m = ¡1

1
2
º kJm(k» )(Y 0

m(kR) ¡ iJ 0
m(kR)) cos(m(³ ¡ ¿ ));

R > » ;

T e(s; x) =

1X

m = ¡1

1
2
º kJ 0

m(kR)(Ym(k» ) ¡ iJm(k» )) cos(m( ³ ¡ ¿ ));

» > R;

(2.11)

L(s; x) =

8
>>>>>>><

>>>>>>>:

Li(s; x) =

1X

m = ¡1

1
2
º kJ 0

m(k» )(Ym(kR) ¡ iJm(kR)) cos(m( ³ ¡ ¿ ));

R > » ;

Le(s; x) =

1X

m = ¡1

1
2
º kJm(kR)(Y 0

m(k» ) ¡ iJ 0
m(k» )) cos(m( ³ ¡ ¿ ));

» > R;

(2.12)

M (s; x) =

8
>>>>>>><

>>>>>>>:

M i(s; x) =

1X

m = ¡1

1
2
º k2J 0

m(k» )(Y 0
m(kR) ¡ iJ 0

m(kR)) cos(m(³ ¡ ¿ ));

R > » ;

M e(s; x) =

1X

m = ¡1

1
2
º k2J 0

m(kR)(Y 0
m(k» ) ¡ iJ 0

m(k» )) cos(m( ³ ¡ ¿ ));

» > R;

(2.13)

where (R; ³ ) and ( » ; ¿ ) are the polar coordinates of s and x, respectively. Note that
U = U i, T = T i, L = Li and M = M i for the exterior circular problem and U = U e,
T = T e, L = Le and M = M e for the interior circular problem.

With the above preparation, we are now ready for a study of the annular case. If,
for simplicity, we further subject the problem to the Dirichlet boundary condition
u = 0 on all B, the null-­ eld equation (2.8) simpli­ es to

Z

B

U (s; x)t(s) dB(s) = 0; x 2 De; (2.14)

and hence only t(s) on B1 and B2 need be expanded into the Fourier series,

t(s) = a0 +

1X

n= 1

(an cos n³ + bn sin n³ ); s 2 B1; (2.15)

t(s) = p0 +

1X

n= 1

(pn cos n³ + qn sin n³ ); s 2 B2; (2.16)

where an, bn, pn and qn are the Fourier coe¯ cients. In the stage of substituting (2.10)
for the U kernel in (2.14), U i and U e are adopted for the ­ eld point x = ( » ; ¿ ) in
the inner complementary domain ( » < r1) and the outer complementary domain
( » > r2), respectively. When the ­ eld point x with radius » < r1 approaches the
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boundary B1 and is ­ nally located on B1 with radius » = r1, we have

Z

B2

U i(s; x)t(s) dB(s) +

Z

B1

U i(s; x)t(s) dB(s)

=

1X

n= 0

1

"n
º 2r2Jn(kr1)[Yn(kr2) ¡ iJn(kr2)](pn cos n¿ + qn sin n¿ )

¡
1X

n= 0

1

"n
º 2r1Jn(kr1)[Yn(kr1) ¡ iJn(kr1)](an cos n¿ + bn sin n¿ ) = 0;

x 2 B1;
(2.17)

where "n is the Neumann factor ("0 = 1 and "n = 2 for n > 0). According to (2.17),
the Fourier coe¯ cients an, pn, bn and qn have the following relations:

pn =

µ
r1Jn(kr1)[Yn(kr1) ¡ iJn(kr1)]

r2Jn(kr1)[Yn(kr2) ¡ iJn(kr2)]

¶
an; n = 0; 1; 2; : : : ; (2.18)

qn =

µ
r1Jn(kr1)[Yn(kr1) ¡ iJn(kr1)]

r2Jn(kr1)[Yn(kr2) ¡ iJn(kr2)]

¶
bn; n = 1; 2; : : : : (2.19)

On the other hand, moving the ­ eld point x with radius » > r2 to the boundary B2

and ­ nally locating it on B2 with radius » = r2, we have

Z

B2

U e(s; x)t(s) dB(s) +

Z

B1

U e(s; x)t(s) dB(s)

=

1X

n= 0

1

"n
º 2r2Jn(kr2)[Yn(kr2) ¡ iJn(kr2)](pn cos n¿ + qn sin n¿ )

¡
1X

n= 0

1

"n
º 2r1Jn(kr1)[Yn(kr2) ¡ iJn(kr2)](an cos n¿ + bn sin n¿ ) = 0;

x 2 B2:
(2.20)

Similarly, we obtain the relations between an, bn and pn, qn as follows:

pn =

µ
r1Jn(kr1)[Yn(kr2) ¡ iJn(kr2)]

r2Jn(kr2)[Yn(kr2) ¡ iJn(kr2)]

¶
an; n = 0; 1; 2; : : : ; (2.21)

qn =

µ
r1Jn(kr1)[Yn(kr2) ¡ iJn(kr2)]

r2Jn(kr2)[Yn(kr2) ¡ iJn(kr2)]

¶
bn; n = 1; 2; : : : : (2.22)

To seek non-trivial data for the generalized coe¯ cients of an, bn, pn and qn, we
have two possible eigensolutions for (2.18), (2.19), (2.21) and (2.22). Firstly, we have
the eigenequations

Jn(kr1)Yn(kr2) ¡ Jn(kr2)Yn(kr1) = 0; n = 0; 1; 2; : : : ; (2.23)
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from which we obtain the non-trivial data in column vector form:
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a0

p0

a1

b1

p1

q1

...
an

bn

pn

qn

...
aN

bN

pN

qN

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
0
0
0
0
0
...
1
0

(r1Jn(kr1))=(r2Jn(kr2))
0
...
0
0
0
0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

an +

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
0
0
0
0
0
...
0
1
0

(r1Jn(kr1))=(r2Jn(kr2))
...
0
0
0
0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

bn; (2.24)

where an and bn are arbitrary. Secondly, we have

Jn(kr1) = 0; n = 0; 1; 2; : : : ; (2.25)

from which we obtain the non-trivial data
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a0

p0

a1

b1

p1

q1
...

an

bn

pn

qn

...
aN

bN

pN

qN

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
0
0
0
0
0
...
1
0
0
0
...
0
0
0
0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

an +

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
0
0
0
0
0
...
0
1
0
0
...
0
0
0
0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

bn; (2.26)

where an and bn are also arbitrary.
Similarly, we can derive two possible eigenequations if the hypersingular (LM)

BIE is used. The ­ rst is identical to (2.23), but the second now turns out to be

J 0
n(kr1) = 0; n = 0; 1; 2; : : : ; (2.27)
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from which we also obtain the data (2.26). In (2.27), the prime denotes the derivative
with respect to the argument.

It is interesting and critically important to note that, although Jn of (2.25) and J 0
n

of (2.27) have di¬erent sets of roots, their corresponding non-trivial data for the gen-
eralized coe¯ cients are the same, that is, those corresponding to (2.27) are identical
to the data (2.26). Let us recall, however, that (2.23) is the same set of eigenequa-
tions resulted from either using the singular (UT ) BIE or the hypersingular (LM)
BIE. This indicates that (2.23) is the true set of eigenequations and the true eigenso-
lutions are indeed as they are, independent of whatever di¬erent formulations being
used. Conversely, the spurious eigenvalues that satisfy the spurious eigenequations
are instead hiding in (and as a consequence depend upon) the particular formula-
tions used; therefore, equations (2.25) and (2.27) are the spurious eigenequations
analytically derived from the singular and hypersingular BIEs, respectively. Accord-
ing to (2.25) (respectively, (2.27)), the spurious eigenvalues k s hiding in the singular
(respectively, hypersingular) BIE are the roots of Jn (respectively, J 0

n) divided by r1

and hence depend on the inner boundary (r1) of the annular domain. This assertion
matches the results obtained by using circulants and numerical simulations reported
in Chen et al . (2001c). In fact, the multiply connected problem can be superimposed
by two problems: one an interior problem with B2 as the boundary and the other an
exterior problem with B1 as the boundary (Chen et al . 2001c). The source that causes
the spurious eigenvalues stems from the exterior problem with the inner boundary,
since it is well known that ­ ctitious frequencies are embedded in the integral for-
mulation, even though the complex-valued kernels (of the UT or LM equations) are
employed (Chen 1998; Chen & Kuo 2000).

3. Derivation of true and spurious modes by using degenerate
kernels and the Fourier series expansions

In the last section we have identi­ ed the spurious and true eigenvalues. To ­ nd the
corresponding spurious and true eigenmodes, we ­ rst write down the dual BIEs for
the interior point x 2 D as follows:

u(x) = ¡ 1

2 º

Z

B

U(s; x)t(s) dB(s); x 2 D; (3.1)

t(x) = ¡ 1

2 º

Z

B

L(s; x)t(s) dB(s); x 2 D; (3.2)

which, upon using the degenerate kernels (2.4) and (2.6), become

u(x) = ¡ 1

2 º

½Z

B1

U e(s; x)t(s) dB(s) +

Z

B2

U i(s; x)t(s) dB(s)

¾
; x 2 D; (3.3)

t(x) = ¡ 1

2 º

½Z

B1

Le(s; x)t(s) dB(s) +

Z

B2

Li(s; x)t(s) dB(s)

¾
; x 2 D: (3.4)

Using the boundary data (2.24), we convert the domain equations (3.3) and (3.4)
into the true eigenmodes (for x 2 D) as follows:

un( » ; ¿ ) =
º

2"n
r1Jn(kr1)

·
Yn(k» ) ¡ Yn(kr2)

Jn(kr2)
Jn(k» )

¸
(an cos n¿ + bn sin n¿ );

n = 0; 1; 2; : : : ; (3.5)
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tn( » ; ¿ ) =
º

2"n

r1kJn(kr1)

·
Y 0

n(k» ) ¡ Yn(kr2)

Jn(kr2)
J 0

n(k» )

¸
(an cos n¿ + bn sin n¿ );

n = 0; 1; 2; : : : : (3.6)

On the other hand, using the boundary data (2.26), we convert the domain equa-
tions (3.3) and (3.4) into the spurious modes (for x 2 D) as follows:

un( » ; ¿ ) =
º

2"n

r1Jn(kr1)[Yn(k» ) ¡ iJn(k» )](an cos n¿ + bn sin n¿ ); n = 0; 1; 2; : : : ;

(3.7)

tn( » ; ¿ ) =
º

2"n
r1Jn(kr1)[Y 0

n(k» ) ¡ iJ 0
n(k» )](an cos n¿ + bn sin n¿ ); n = 0; 1; 2; : : : :

(3.8)

These turn out to be un( » ; ¿ ) = tn( » ; ¿ ) = 0 on account of (2.25), so that the
spurious modes (3.7) and (3.8) corresponding to the spurious eigenvalues hiding in
the singular BIE are trivial null ­ elds. However, from (2.27), the spurious modes (3.7)
and (3.8) corresponding to the spurious eigenvalues hiding in the hypersingular BIE
are not trivial. Even though the spurious mode is trivial theoretically, the contour
distribution can be plotted numerically due to no true zero in numerical computation.

4. Null-¯eld formulations of BIEs

In the above sections, the mechanisms of the spurious eigensolutions in the multiply
connected domain were explored analytically using the degenerate kernels and the
Fourier series expansions in the singular and hypersingular BIEs. To avoid singularity,
a null-­ eld approach may be employed. Firstly, we collocate (2.14) at a point ( » 1; ¿ 1),
where » 1 < r1, 0 6 ¿ 1 < 2 º , by substituting the ­ eld point ( » 1; ¿ 1) into (2.14), and
obtain the null-­ eld equation

1X

n = 0

1

"n
º 2r2Jn(k» 1)[Yn(kr2) ¡ iJn(kr2)](pn cos n¿ 1 + qn sin n¿ 1)

¡
1X

n= 0

1

"n
º 2r1Jn(k» 1)[Yn(kr1) ¡ iJn(kr1)](an cos n¿ 1 + bn sin n¿ 1) = 0:

(4.1)

From (4.1), we obtain the relations between an; bn and pn; qn as follows:

pn =

µ
r1Jn(k» 1)[Yn(kr1) ¡ iJn(kr1)]

r2Jn(k» 1)[Yn(kr2) ¡ iJn(kr2)]

¶
an; n = 0; 1; 2; : : : ; (4.2)

qn =

µ
r1Jn(k» 1)[Yn(kr1) ¡ iJn(kr1)]

r2Jn(k» 1)[Yn(kr2) ¡ iJn(kr2)]

¶
bn; n = 1; 2; : : : : (4.3)

Note that (4.2) and (4.3) are mathematically equivalent to (2.18) and (2.19) if the
common terms Jn(k» 1) in the denominators and numerators of the right-hand sides
of (4.2) and (4.3) and the common terms Jn(kr1) in the denominators and numerators
of the right-hand sides of (2.18) and (2.19) are all cancelled out.
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Secondly, we collocate (2.14) at another point ( » 2; ¿ 2), where » 2 > r2 and
0 6 ¿ 2 < 2º , to obtain the null-­ eld equation

1X

n = 0

1

"n
º 2r2Jn(kr2)[Yn(k» 2) ¡ iJn(k» 2)](pn cos n¿ 1 + qn sin n¿ 1)

¡
1X

n= 0

1

"n
º 2r1Jn(kr1)[Yn(k» 2) ¡ iJn(k» 2)](an cos n¿ 1 + bn sin n¿ 1) = 0;

(4.4)

from which follow the relations

pn =

µ
r1Jn(kr1)[Yn(k» 2) ¡ iJn(k» 2)]

r2Jn(kr2)[Yn(k» 2) ¡ iJn(k» 2)]

¶
an; n = 0; 1; 2; : : : ; (4.5)

qn =

µ
r1Jn(kr1)[Yn(k» 2) ¡ iJn(k» 2)]

r2Jn(kr2)[Yn(k» 2) ¡ iJn(k» 2)]

¶
bn; n = 1; 2; : : : : (4.6)

Similarly, equations (4.5) and (4.6) are mathematically equivalent to (2.21) and (2.22)
if the common terms Yn(k» 2) ¡ iJn(k» 2) in the denominators and numerators of the
right-hand sides of (4.5) and (4.6) and the common terms Yn(kr2) ¡ iJn(kr2) in the
denominators and numerators of the right-hand sides of (2.21) and (2.22) are all
cancelled out. From (4.2), (4.3), (4.5) and (4.6), the formulation of null-­ eld BIEs
is shown to have the ability to solve the eigenproblem free from the singular and
hypersingular integrals. Note that, from (4.2) and (4.3), the collocation with radius
» 1 may fail in case of Jn(k» 1) = 0. This indicates that the null-­ eld formulation also
results in spurious eigensolutions, as will be demonstrated in examples in x 8.

The above is for the null-­ eld formulation with the UT kernels. For the aforemen-
tioned concept using the LM kernels, the analysis is similar but the common terms
are di¬erent.

5. Fictitious boundary formulations of BIEs

In order to avoid singularity, instead of the null-­ eld formulations, the ­ ctitious
boundary formulations are another choice. In this section we present the ­ ctitious
BIEs based on the indirect method, ­ rst adopting the single-layer-potential approach
and then the double-layer-potential approach.

For the single-layer-potential approach, the single-layer density ¿ is distributed
on the inner and outer ­ ctitious boundaries B0

1 and B0
2 and the ­ eld solutions are

represented in terms of the single-layer potential,

u(x) =

Z

B 0
U (s; x) ¿ (s) dB(s); (5.1)

t(x) =

Z

B 0
L(s; x) ¿ (s) dB(s); (5.2)

where the ­ ctitious boundary B0 involves the retracted boundary B0
1 and the ex-

panded boundary B0
2. Expanding the boundary densities into the Fourier series, we
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(c) (d)

r’2

r’1

Figure 3. Four approaches: (a) direct BEM; (b) CHIEF method;
(c) null-¯eld formulation; (d) ¯ctitious BEM.

have

¿ (s) = a0
0 +

NX

n= 1

(a0
n cos n³ + b0

n sin n³ ); s 2 B0
1; (5.3)

¿ (s) = p0
0 +

NX

n= 1

(p0
n cos n³ + q0

n sin n³ ); s 2 B0
2; (5.4)

where a0
0, p0

0 a0
n, b0

n p0
n and q0

n (n = 1; 2; : : : ) are the Fourier coe¯ cients. Considering
the same Dirichlet problem as in the preceding sections, we have

0 =

Z

B 0
U (s; x) ¿ (s) dB(s)

=

Z

B 0
2

U i(s; x) ¿ (s) dB(s) +

Z

B 0
1

U e(s; x)¿ (s) dB(s)

=
NX

n= 0

1

"n

º 2r0
2Jn(kr1)[Yn(kr0

2) ¡ iJn(kr0
2)](p0

n cos n¿ + q0
n sin n¿ )

¡
NX

n = 0

1

"n
º 2r0

1Jn(kr0
1)[Yn(kr1) ¡ iJn(kr1)](a0

n cos n¿ + p0
n sin n¿ ); x 2 B1;

(5.5)
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and

0 =

Z

B 0
U (s; x) ¿ (s) dB(s)

=

Z

B 0
2

U i(s; x) ¿ (s) dB(s) +

Z

B 0
1

U e(s; x) ¿ (s) dB(s)

=

NX

n = 0

1

"n
º 2r0

2Jn(kr2)[Yn(kr0
2) ¡ iJn(kr0

2)](p0
n cos n¿ + q0

n sin n¿ )

¡
NX

n= 0

1

"n
º 2r0

1Jn(kr0
1)[Yn(kr2) ¡ iJn(kr2)](a0

n cos n¿ + p0
n sin n¿ ); x 2 B2;

(5.6)

where r0
1 and r0

2 are shown in ­ gure 3d. From (5.5), we have the relations

p0
n =

µ
r0

1Jn(kr0
1)[Yn(kr1) ¡ iJn(kr1)]

r0
2Jn(kr1)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
a0

n; n = 0; 1; 2 : : : ; (5.7)

q0
n =

µ
r0

1Jn(kr0
1)[Yn(kr1) ¡ iJn(kr1)]

r0
2Jn(kr1)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
b0

n; n = 1; 2 : : : : (5.8)

Similarly, from (5.6), we have the relations

p0
n =

µ
r0

1Jn(kr0
1)[Yn(kr2) ¡ iJn(kr2)]

r0
2Jn(kr2)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
a0

n; n = 0; 1; 2 : : : ; (5.9)

q0
n =

µ
r0

1Jn(kr0
1)[Yn(kr2) ¡ iJn(kr2)]

r0
2Jn(kr2)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
b0

n; n = 1; 2 : : : : (5.10)

Combination of (5.7), (5.8), (5.9) and (5.10) yields the eigenequations

Jn(kr0
1)[Jn(kr1)Yn(kr2) ¡ Jn(kr2)Yn(kr1)] = 0; n = 0; 1; 2 : : : : (5.11)

It is seen from (5.11) that the spurious eigenvalues imbedded in the ­ ctitious BIEs
using the single-layer-potential approach are nothing but the values of k that satisfy
Jn(kr0

1) = 0. This indicates that the spurious eigenvalues depend on the location
of the inner ­ ctitious boundary (r0

1) chosen to solve the multiply connected prob-
lem. Although the spurious eigenvalues are di¬erent from those using the true inner
boundary, the true eigenvalues are identical to those obtained by the other formula-
tions.

For the double-layer-potential approach of the indirect method,

u(x) =

Z

B 0
T (s; x)Á(s) dB(s); (5.12)

t(x) =

Z

B 0
M (s; x)Á(s) dB(s); (5.13)

where the double-layer density Á is distributed on the inner and outer ­ ctitious
boundaries B 0

1 and B0
2. Expanding the boundary densities into the Fourier series, we
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have

Á(s) = ·a0
0 +

1X

n= 1

(·a0
n cos n³ + ·b0

n sin n³ ); s 2 B0
1; (5.14)

Á(s) = ·p0
0 +

1X

n= 1

(·p0
n cos n³ + ·q0

n sin n³ ); s 2 B0
2; (5.15)

where ·a0
0, ·p0

0, ·a0
n, ·b0

n, ·p0
n and ·q0

n (n = 1; 2; : : : ) are the Fourier coe¯ cients. For the
Dirichlet problem, collocating the equation at the points x 2 B1 and x 2 B2 yields

0 =

Z

B 0
2

T i(s; x)Á(s) dB(s) +

Z

B 0
1

T e(s; x)Á(s) dB(s); x 2 B1; (5.16)

0 =

Z

B 0
2

T i(s; x)Á(s) dB(s) +

Z

B 0
1

T e(s; x)Á(s) dB(s); x 2 B2; (5.17)

from which follow the relations

·p0
n =

µ
r0

1J 0
n(kr0

1)[Yn(kr1) ¡ iJn(kr1)]

r0
2Jn(kr1)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
·a0

n; n = 0; 1; 2 : : : ; (5.18)

·q0
n =

µ
r0

1J 0
n(kr0

1)[Yn(kr1) ¡ iJn(kr1)]

r0
2Jn(kr1)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
·b0

n; n = 1; 2 : : : ; (5.19)

and

·p0
n =

µ
r0

1J 0
n(kr0

1)[Yn(kr2) ¡ iJn(kr2)]

r0
2Jn(kr2)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
·a0

n; n = 0; 1; 2 : : : ; (5.20)

·q0
n =

µ
r0

1J 0
n(kr0

1)[Yn(kr2) ¡ iJn(kr2)]

r0
2Jn(kr2)[Yn(kr0

2) ¡ iJn(kr0
2)]

¶
·b0

n; n = 1; 2 : : : ; (5.21)

respectively. Combining (5.18), (5.19), (5.20) and (5.21), we have the eigenequations

J 0
n(kr0

1)[Jn(kr1)Yn(kr2) ¡ Jn(kr2)Yn(kr1)] = 0; n = 0; 1; 2 : : : : (5.22)

According to (5.22), the spurious eigenvalues imbedded in the ­ ctitious BIE using
the double-layer-potential approach are nothing but the values of k that satisfy
J 0

n(kr0
1) = 0. Comparing (5.11) with (5.22), we ­ nd that the spurious eigenvalues

depend on the location of the inner ­ ctitious boundary (r0
1) for the multiply con-

nected problem, no matter what one of the two approaches is used. Moreover, true
eigensolutions are always conserved and spurious eigensolutions are also imbedded in
the ­ ctitious BIEs regardless of whether the singular-layer or double-layer approach
is used.

6. CHIEF treatment for spurious eigensolutions

According to (2.18), (2.19), (2.21) and (2.22), the k values that satisfy Jn(kr1) = 0 are
the spurious eigenvalues. Therefore, the constraint becomes a trivial equation. Chen
et al . (2001c) have used the modi­ ed Burton{Miller methods (ikU(s; x)+L(s; x)) or
its real part (ik[Ur(s; x)]+ [Lr(s; x)]) to sort out the true eigenvalues. In this section
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filtering technique for 
spurious eigenvalue ks

add a CHIEF point (   1,   1)

no
(exterior point)

failure

noovercome the spurious
eigenvalue of multiplicity one

add another interior point (   3,   3) failure

success (overcome the spurious
eigenvalues of multiplicity two) 

no

no

yes

yes

yes

r f

1 < r1r

yes
(interior point)

Jn (k   1) = 0r

r f
Jn (k   3) = 0r

sin n (  1-   3) = 0ff

Figure 4. Flowchart of the CHIEF method.

we employ the CHIEF method to deal with the problem of spurious eigenvalues. In
choosing the additional points, two options may be considered: one is to put the
points in the region inside the inner circle (the CHIEF points) (Chen et al . 2001b);
and the other is to put them in the region outside the outer circle (the CHEEF
points) (Chen et al . 2001a).

Firstly, we choose a CHIEF point (» 1; ¿ 1), obtaining speci­ c equations (4.2)
and (4.3) for the point. Combining (2.21), (2.22), (4.2) and (4.3), we have

Jn(k» 1)[Jn(kr2)Yn(kr1) ¡ Jn(kr1)Yn(kr1)] = 0; n = 0; 1; 2; : : : : (6.1)

Comparing (6.1) with the true eigenequation (2.23), we ­ nd that the CHIEF
method works by adding a point in the area inside the inner circle to overcome
the spurious-eigenvalue problem if the selected point is not located on the position
where Jn(k» 1) = 0. It is interesting that the failure criterion is the same as that of
the null-­ eld formulation discussed in x 4. Consequently, when the ks values satisfy
the spurious eigenequations, Jn(k s r1) = 0, we can resort to (6.1) to obtain a valid
constraint where Jn(k s » 1) 6= 0.

Secondly, we choose a CHEEF point ( » 2; ¿ 2) outside the outer circle, obtaining spe-
ci­ c equations (4.5) and (4.6) for the point. Combining (2.21), (2.22), (4.5) and (4.6),
we have

Jn(kr1)Jn(kr2) = Jn(kr1)Jn(kr2); n = 0; 1; 2; : : : : (6.2)

Equation (6.2) provides merely trivial information for any value of k, since it is an
identity. Hence it fails by adding a point in the area outside the outer circle.

When the spurious eigenvalue is a root of multiplicity two, we need two inde-
pendent constraints to ­ lter out the spurious eigenvalues. Because one added point

Proc. R. Soc. Lond. A (2003)



Eigensolutions of Helmholtz BIEs and BEMs 1905

supplies at most one constraint, an additional point is required. In the preceding dis-
cussion, the location of the added point must be in the region inside the inner circle
in order to obtain independent constraints. Therefore, we add another point ( » 3; ¿ 3)
in this region to ­ lter out the spurious eigenvalue of multiplicity two. Substituting
the ­ eld point ( » 3; ¿ 3) into (2.14), we have

1X

n = 0

1

"n
º 2r2Jn(k» 3)[Yn(kr2) ¡ iJn(kr2)](pn cos n¿ 3 + qn sin n¿ 3)

¡
1X

n= 0

1

"n

º 2r1Jn(k» 3)[Yn(kr1) ¡ iJn(kr1)](an cos n¿ 3 + bn sin n¿ 3) = 0:

(6.3)

Multiplication of the coe¯ cients · and ¸ with (4.1) and (6.3), respectively, and
combination yield

1X

n = 0

1

"n
º 2r2[Yn(kr2) ¡ iJn(kr2)][ · Jn(k» 1) cos n¿ 1 + ¸ Jn(k» 3) cos n¿ 3]pn

+

1X

n= 1

1
2
º 2r2[Yn(kr2) ¡ iJn(kr2)][ · Jn(k» 1) sin n¿ 1 + ¸ Jn(k» 3) sin n¿ 3]qn

¡
1X

n= 0

1

"n
º 2r1[Yn(kr1) ¡ iJn(kr1)][ · Jn(k» 1) cos n¿ 1 + ¸ Jn(k» 3) cos n¿ 3]an

¡
1X

n = 1

1
2
º 2r1[Yn(kr1) ¡ iJn(kr1)][ · Jn(k» 1) sin n¿ 1 + ¸ Jn(k» 3) sin n¿ 3]bn = 0:

(6.4)

On the basis of linear algebra, the two equations for the CHIEF points are inde-
pendent if and only if the coe¯ cients of (6.4), · and ¸ , vanish for any situation.
The terms of [Yn(kr1) ¡ iJn(kr1)] and [Yn(kr2) ¡ iJn(kr2)] are never zeros for any k;
hence we have

·
Jn(k» 1) sin n¿ 1 Jn(k» 3) sin n¿ 3

Jn(k» 1) cos n¿ 1 Jn(k» 3) cos n¿ 3

¸ ½
·
¸

¾
=

½
0
0

¾
: (6.5)

If the determinant of the matrix in (6.5) vanishes, the coe¯ cients · and ¸ can be
arbitrary, i.e. equations (4.1) and (6.3) do not provide two independent constraints.
In this case, the intersection angle ¿ 1 ¡ ¿ 3 between the two selected points satisfying

sin n(¿ 1 ¡ ¿ 3) = 0 or ¿ 1 ¡ ¿ 3 =
º

n
; n = 1; 2; 3; : : : ; (6.6)

makes the two equations dependent. Besides, the CHIEF point ( » 3; ¿ 3) does not nul-
lify Jn(k» 3). Therefore, we must avoid this point in order to ­ lter out the spurious
eigenvalues of multiplicity two e¬ectively. The ®owchart of the CHIEF method is
shown in ­ gure 4. Although the above CHIEF treatment and discussions were devel-
oped for the dual BIEs formulation, almost the same treatments and discussions
can be applied to deal with the spurious eigenvalues occurring in the null-­ eld and
­ ctitious BIEs formulations.
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7. Detection of spurious and true eigenvalues in
BEM formulations using SVD-updating techniques

and Fredholm’s alternative theorem

In this section, the true and spurious eigensolutions will be detected and distin-
guished. Although we deal with the eigenproblem subject to homogeneous boundary,
the following derivation may resort to the case of the non-homogeneous boundary
condition by using the concept of spurious resonance. Two principles are adopted
here. The spurious eigensolution depends on the formulation instead of the types of
boundary conditions. On the contrary, the true solutions (eigenvalue and eigenmode)
are embedded in any formulation and are di¬erent for the Dirichlet and Neumann
problems.

(a) Spurious eigenvalues in direct BEMs detected by SVD-updating documents

In the BEM implementation, the singular BIE (2.2) is discretized to

[U ]ftg = [T ]fug: (7.1)

Let us consider two problems with non-homogeneous boundary conditions as follows,

[U ]ftg = [T ]f·ug = f·b D g for the Dirichlet problem; (7.2)

[U ]f ·t g = [T ]fug = f·bNg for the Neumann problem; (7.3)

where f·ug and f ·t g are speci­ ed boundary data, and the subscripts (or super-
scripts) `D’ and `N’ indicate the Dirichlet and Neumann problems, respectively. Since
spurious solution depends on the formulation instead of the types of boundary con-
dition, spurious eigenvalues are found embedded in both the Dirichlet problem (7.2)
and the Neumann problem (7.3) in the case of spurious resonance, both of which have
used the same UT equation (7.1). According to the Fredholm alternative theorem,
the existence of the solution (corresponding to each spurious eigenvalue k s ) to (7.2)
(respectively, (7.3)) implies

f·b D gHf ¿ D
s g = 0 for the Dirichlet problem; (7.4)

f·bNgHf ¿ N
s g = 0 for the Neumann problem; (7.5)

where the superscript `H’ denotes the Hermitian conjugate and f ¿ D
s g and f ¿ N

s g are
the spurious modes that satisfy the adjoint systems

[U (ks )]
Hf ¿ D

s g = f0g for the Dirichlet problem; (7.6)

[T (k s )]
Hf ¿ N

s g = f0g for the Neumann problem: (7.7)

Substituting (7.2) and (7.3) into (7.4) and (7.5), respectively, we obtain

f·ugH[T (k s )]
Hf ¿ D

s g = 0 for the Dirichlet problem; (7.8)

f ·t gH[U(k s )]
Hf ¿ N

s g = 0 for the Neumann problem: (7.9)

Since f·ug and f ·t g are arbitrary, equations (7.8) and (7.9) imply

[T (k s )]
Hf¿ D

s g = f0g for the Dirichlet problem; (7.10)

[U (ks )]
Hf ¿ N

s g = f0g for the Neumann problem: (7.11)
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Combining (7.10) and (7.11) with (7.6) and (7.7), respectively, we have

·
U H(k s )

T H(k s )

¸
f ¿ D

s g = f0g for the Dirichlet problem; (7.12)

·
UH(k s )

T H(k s )

¸
f¿ N

s g = f0g for the Neumann problem: (7.13)

Comparing (7.12) with (7.13), we ­ nd that the spurious modes for the Dirichlet and
Neumann problems are identical, ( ¿ D

s = ¿ N
s = ¿ s ), and that

·
U H(ks )

T H(k s )

¸
f ¿ s g = f0g: (7.14)

Taking the Hermitian conjugation with respect to (7.14), we have

f ¿ s gH
£
U (ks ) T (k s )

¤
= f0gH: (7.15)

The [T ] matrix can be thought to be the updating document with the [U ] matrix
in (7.15), while the [T ]H matrix is the updating term with the [U ]H matrix in (7.14).
From the preceding argument, the two matrices [U ] and [T ] have the same spurious
mode f ¿ s g corresponding to each spurious eigenvalue k s .

Similarly, the LM method has the same spurious mode ( ·¿ D
s = ·¿ N

s = ·¿ s ) corre-
sponding to each spurious eigenvalue ·ks for the Dirichlet and Neumann problems as
shown below,

·
LH(·k s )

M H(·k s )

¸
f·¿ s g = f0g; f ·¿ s gH

£
L(·k s ) M (·k s )

¤
= f0gH: (7.16)

Note that f·¿ s g is the spurious mode resulting from the LM method, whereas f ¿ s g
is the spurious mode resulting from the UT method. By the same token as in the
UT method, the [L] and [M ] matrices have the same spurious eigenvalues. In other
words, the spurious eigenvalues are related to those formulated by the UT method
or by the LM method rather than related to the boundary condition of the Dirichlet
type or the Neumann type.

To detect the spurious eigenvalues, we merge the [U ] and [T ] matrices to form the
so-called updating document,

[B(k)] =
£
U (k) T (k)

¤
: (7.17)

Then applying the SVD leads to

[B(k)] = [ © B ][ § B ][ ª B ]H; (7.18)

where [ § B ] is a diagonal matrix with positive or zero singular values as diagonal
elements and [ © B ] and [ ª B ] are the left and right unitary matrices, respectively.
Thus the minimum singular value of [B(k)] as a (numerical) function of k can be
used to ­ nd the spurious eigenvalues ks and then the spurious modes f ¿ s g.
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(b) True eigenvalues in direct BEMs detected by SVD-updating terms

In this subsection we use the SVD-updating-term technique to detect true eigen-
values kt obtained from the direct BEMs. First let us consider that the true solution
must be embedded in

[U(kt)]ftg = f0g;

[L(kt)]ftg = f0g

)
for the homogeneous Dirichlet problem; (7.19)

which indicates that both the [U ] and [L] matrices have a zero singular value cor-
responding to the right unitary vector ftg. This ­ nding guides us to merge the two
equations together,

[D(kt)]ftg = f0g; (7.20)

where

[D(kt)] =

·
U(kt)
L(kt)

¸
; (7.21)

and apply the SVD,
[D(k)] = [ © D ][ § D ][ ª D ]H: (7.22)

Theoretically, the column vector of [ ª D ] corresponding to the zero singular value
in [ § D ] is nothing but the true boundary eigenmode ftg. By plotting the minimum
singular value of [D(k)] versus k, one has a curve that drops at the positions of true
eigenvalues.

The SVD-updating-term technique can also be applied to the Neumann problem;
equations (7.20) and (7.21) are thus replaced by

[N (k)]fug = f0g; (7.23)

where

[N (k)] =

·
T (k)
M (k)

¸
: (7.24)

To detect true eigenvalues, a similar procedure for the minimum singular value of
matrix [N (k)] versus k must be developed.

(c) True eigenvalues in indirect BEMs detected by SVD-updating documents

For the indirect ­ ctitious BEMs, equations (5.1), (5.2), (5.12) and (5.13) are dis-
cretized to

fug = [U ]f ¿ g; ftg = [L]f ¿ g using the single-layer-potential approach; (7.25)

fug = [T ]fÁg; ftg = [M ]fÁg using the double-layer-potential approach; (7.26)

after discretization. According to the Fredholm alternative theorem, the existence
of solution f ¿ g in (7.25) for the non-homogeneous Dirichlet problem (u = ·u on B0)
implies

f·ugHf ² s g = 0; (7.27)

where ² s satis­ es
[U (kt)]

Hf ² s g = f0g; (7.28)
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and the subscript `s’ of ² indicates here the single-layer-potential approach. Substi-
tuting (7.26) into (7.27), we obtain

fÁgH[T (kt)]
Hf ² s g = 0: (7.29)

Since fÁg can be arbitrary for the arbitrary f·ug, equation (7.29) implies

[T (kt)]
Hf ² s g = f0g: (7.30)

Combining (7.28) with (7.30), we have
·
UH(kt)

T H(kt)

¸
f ² s g = f0g: (7.31)

Similarly, the existence of solution fÁg to (7.26) implies

f·ugHf² d g = 0; (7.32)

where ² d satis­ es
[T (kt)]

Hf² d g = f0g; (7.33)

and the subscript `d’ of ² indicates the double-layer-potential approach. Substituting
(7.25) into (7.32), we obtain

f ¿ gH[U(kt)]
Hf² d g = 0: (7.34)

Since f¿ g can be arbitrary for the arbitrary f·ug, equation (7.34) implies

[U (kt)]
Hf ² d g = f0g: (7.35)

Combining (7.33) with (7.35), we have
·
UH(kt)

T H(kt)

¸
f² d g = f0g: (7.36)

Comparing (7.31) with (7.36), we ­ nd

f ² s g = f² d g = f ² g: (7.37)

Hence, combining (7.28) and (7.33) gives
·
UH(kt)

T H(kt)

¸
f² g = f0g: (7.38)

To detect the true eigenvalues, we plot the minimum singular value of the assembled
matrix ·

UH(k)

T H(k)

¸

versus k, and the curve drops show the positions of the true eigenvalues.
The technique of the SVD-updating document can be extended to the Neumann

problem; the minimum singular value for the assembled matrix
·

LH(k)

M H(k)

¸

versus k is plotted, and the drops in the curve are also found at the positions of true
eigenvalues.
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(d) Spurious eigenvalues in indirect BEMs detected by SVD-updating terms

In this subsection we examine the spurious eigensolutions of the indirect BEMs.
First let us consider the homogeneous Dirichlet and Neumann problem,

[U (k s )]f ¿ g = f0g; (7.39)

[L(k s )]f ¿ g = f0g; (7.40)

to detect the spurious eigenvalues occurring in the single-layer-potential approach.
Combining (7.39) and (7.40), we have

·
U (k s )

L(k s )

¸
f¿ g = f0g: (7.41)

The minimum singular value of the assembled matrix
·
U(k)

L(k)

¸

versus k is then plotted, the local minima of the resulted curve revealing the spurious
eigenvalues ks . Next let us consider

·
T (k s )

M (k s )

¸
fÁg = f0g (7.42)

to detect the spurious eigenvalues occurring in the double-layer-potential approach.
The minimum singular value of the assembled matrix

·
T (k)

M (k)

¸

versus k can be similarly examined to ­ nd the spurious eigenvalues k s .

8. Numerical examples

In order to check the validity of the CHIEF method, the null-­ eld formulation and
the ­ ctitious BEM, we consider three numerical examples: one annular cavity, one
eccentric cavity and one hexagonal-cavity problem.

(a) Annular cavity

(i) Singular and hypersingular BEMs

The radii of the inner and outer boundaries of the annular cavity are 0:5 m and 2 m,
respectively. Figure 5 shows the minimum singular value, ¼ 1, versus k for the [U ],
[L], [T ] and [M ] matrices. As predicted theoretically, the true eigenvalues of the
Dirichlet problem are commonly imbedded in the [U ] and [L] matrices, although the
computational results for lower frequencies were reported to be not good (Hsiao &
Wendland 2000), while we easily ­ nd the true eigenvalues of the Neumann problem in
the [T ] and [M ] matrices. Since spurious eigenvalues vary with di¬erent formulations
instead of types of boundary conditions, the location of the common dips in the [U ]
and [T ] matrices shows the spurious eigenvalues for the singular (UT ) formulation.
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Figure 5. The minimum singular values ( ¼ 1) versus k for the [U ], [L], [T ] and [M ] matrices.

In the same way, the hypersingular (LM) formulation results in another set of spu-
rious eigenvalues, where the common dips occur from the [L] and [M ] matrices. As
predicted analytically in (2.25) and (2.27), spurious eigenvalues, k s , are imbedded in
the [U ] matrix (ks = 4:82, hJ1

0 = 2:4048i), [L] matrix (k s = 0:30, hJ 01
0 = 0i, ks = 3:70,

hJ 01
1 = 1:84118i), [T ] matrix (ks = 4:82, hJ1

0 = 2:4048i) and [M ] matrix (k s = 0,
hJ 01

0 = 0i, ks = 3:70, hJ 01
1 = 1:84118i), where J i

n and J 0i
n are the ith zeros for the

nth-order Bessel function (Jn(¢)) and the derivative of the Bessel function (J 0
n(¢)).

Since the inner radius r1 is 0:5 m, the numerical data and the exact solution in the
middle bracket di¬ers by half theoretically. For the [T ] matrix, the spurious eigen-
value (k s = 4:82, hJ 1

0 = 2:4048i) happens to be almost equal to the true eigenvalue
(kt = 4:82) for the true eigenequation J 0

8(kr1)Y 0
8(kr2) ¡ J 0

8(kr2)Y 0
8(kr1) = 0 of the

Neumann boundary condition shown in table 1. To sort out the true eigenvalues for
the Dirichlet and Neumann problems, the SVD techniques using the updating terms

·
U
L

¸
and

·
T
M

¸

in (7.21) and (7.24), respectively, were adopted. All the true eigenvalues were
extracted out, as can be seen in ­ gure 6. It is interesting to note that, for the
Dirichlet problem (see ­ gure 6a), they are extracted from the updating term

·
U
L

¸
;

whereas for the Neumann problem (see ­ gure 6b) they are from the updating term
·

T
M

¸
:
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Figure 6. Detection of the true eigenvalues by using the SVD-updating terms.
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Figure 7. Detection of the spurious eigenvalues by using the SVD-updating documents [U T ]
and [L M ]. Solid and dashed lines denote the minimum singular value ¼ 1 for the SVD-updating
documents [U T ] and [L M ], respectively.

It is found that the contamination of all the spurious eigenvalues in the [U ], [L], [T ]
and [M ] matrices is suppressed.

To detect the spurious eigenvalues for the UT and LM formulations, the SVD
techniques using the updating documents

£
U T

¤
in (7.15) and

£
L M

¤
in (7.16)

were adopted, and all the spurious eigenvalues (Jn(kr1) = 0 and J 0
n(kr1) = 0)

were sorted out and all the true eigenvalues were suppressed, as can be seen in
­ gure 7. After adding a CHIEF point, the spurious eigenvalues of multiplicity one
were ­ ltered out, as shown in ­ gure 8 (cf. ­ gure 5). The spurious eigenvalues of
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multiplicity two (double roots) still existed as in ­ gure 8. To suppress the spurious
eigenvalues of multiplicity two, two CHIEF points were required to ­ lter out all the
spurious eigenvalues, as shown in ­ gure 9. To demonstrate the failure in selecting
points outside the outer boundary, ­ gure 10, when compared with ­ gure 5, shows
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that spurious eigenvalues still appeared and were not suppressed by imposing the
one CHIEF point. In case of two CHIEF points with the intersection angle that
satis­ es (6.6), the spurious eigenvalues of multiplicity two could not be suppressed,
as shown in ­ gure 11. Also, one interior CHIEF point ( » ; ¿ ) may fail to ­ lter out
the spurious eigenvalue, km

s , once » = Jp
0 =km

s or » = J 0p
0 =km

s , where km
s satis­ es

km
s r1 = Jm

0 or km
s r1 = J 0m

0 , respectively. Since the valid CHIEF point is inside the
inner boundary (» < r1), the integer value of m must be larger than p. Figure 12
shows that the CHIEF point ( » = 0:3189 m, p = 1) failed to ­ lter out the spurious
eigenvalue k3

s = 17:3074 for the [U ] matrix.

(ii) Null-¯eld BEMs

According to the preceding discussion, we ­ nd that the spurious eigenvalues calcu-
lated by the null-­ eld BEMs depend on the inner collocation radius » 1. The results
of the di¬erent » 1 are shown in ­ gure 13 ( » 1 = 0:45 m, » 2 = 2:2 m) and ­ gure 14
( » 1 = 0:4 m, » 2 = 2:2 m). Comparing ­ gure 5 with ­ gure 13, the spurious eigenvalues
shift from k s = J1

0 =r1 = 2:4048=0:5 to k s = J1
0 =» 1 = 2:4048=0:45 for both the [U ]

and [T ] matrices and from ks = J 01
1 =r1 = 1:841 18=0:5 to k s = J 01

1 =» 1 = 1:841 18=0:45
for both the [L] and [M ] matrices. By changing the collocation radii in the null-­ eld
equation from (» 1 = 0:45 m, » 2 = 2:2 m) to ( » 1 = 0:4 m, » 2 = 2:2 m), the sensitivity
analysis demonstrated that the spurious eigenvalues shift right again by a factor of
0:45=0:4 in a similar way as shown in ­ gure 13.
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Table 2. The ¯rst ¯ve eigenvalues of the Helmholtz eigenproblem for the annular cavity
using di® erent methods

eigenvalue
z }| {

method k1 k2 k3 k4 k5

FEMa (ABAQUS) 2.03 2.20 2.62 3.15 3.71

BEMa (Burton & Miller) 2.06 2.23 2.67 3.22 3.81

BEM b (CHIEF) 2.05 2.23 2.67 3.22 3.81

BEM b (null-¯eld) 2.04 2.20 2.65 3.21 3.80

BEM b (¯ctitious) 2.04 2.21 2.66 3.21 3.80

analytical solution b 2.05 2.23 2.66 3.21 3.80

aData from Chen et al . (2001c). b Present paper.
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Figure 15. The minimum singular values ( ¼ 1) versus k for the [U ], [L], [T ] and [M ] matrices
by using the ¯ctitious BEM (r 0

1 = 0:45 m, r 0
2 = 2:2 m).

(iii) Fictitious BEMs

In the ­ ctitious BEM, the spurious eigenvalues are dominated by the location
of the inner ­ ctitious boundary. To demonstrate how the location of the inner ­ cti-
tious boundary dominates the spurious eigenvalues in (5.11) and (5.22), the ­ ctitious
BEMs with r0

1 = 0:4 m and r0
2 = 2:2 m were employed to solve the annular case, as

shown in ­ gure 15. It is found that the spurious eigenvalues shift to the right by a
factor of (r1=r0

1), when comparing with ­ gure 5 using the direct singular and hyper-
singular BEMs. This ­ nding matches the results of the null-­ eld BEMs. By changing
the location of inner ­ ctitious boundary from r0

1 = 0:45 m to 0:4 m, ­ gure 16 shows
that spurious eigenvalues shift to the right again by a factor of (0:45=0:4) in com-
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(a)

·
U

L

¸
and (b)

·
T

M

¸

for the ¯ctitious BEM.

parison with those of ­ gure 15. To sort out the true eigenvalues for the Dirichlet and
Neumann problems, the SVD technique, using the updating documents

£
U T

¤
in

(7.38) and
£
L M

¤
were adopted, respectively. All the true eigenvalues we obtained

agree well with those of ­ gure 6, as shown in ­ gure 17. To summarize, we list the
­ rst ­ ve eigenvalues by using di¬erent formulations in table 2. In order to detect
the spurious eigenvalues by employing the single-layer- and double-layer-potential
approaches, the SVD technique using the updating terms

·
U
L

¸
and

·
T
M

¸

in (7.41) and (7.42), respectively, were adopted. It is found that all the spurious
eigenvalues were sorted out and all the true eigenvalues were suppressed, as in ­ g-
ure 18.

(b) Polygonal cavity

The polygonal cavities with a ­ xed circular core are shown in ­ gure 19, with the
radius b = 0:5 m of the circular core and r = 1 m, with a di¬ering number of sides.
In this problem, Wang (1998) derived the fundamental frequencies of the polygonal
cavities for di¬erent numbers of sides (M ) of the regular polygon. The fundamental
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Figure 19. Polygonal acoustic cavities with a ¯xed circular boundary.

Table 3. The fundamental eigenvalues of the polygonal cavities for di® erent methods

square hexagonal octagonal
(M = 4) (M = 6) (M = 8)

analytical solutiona 5.09 5.76 5.97

direct BEM b 5.07 5.74 5.94

CHIEF b 5.08 5.75 5.96

null-¯eld formulation b 5.08 5.74 5.93

¯ctitious BEM b 5.08 5.73 5.96

aData from Wang (1998). b Present paper.

u = 0 r2

r1B1 u = 0

B2

(   2 + k2) u (x) = 0D

Figure 20. Figure sketch for an eccentric cavity.

frequencies of the polygonal cavities, by using di¬erent methods including Wang’s
result and the methods that we proposed in the present paper, are shown in table 3.
The results of the present ones matched well with Wang’s result. Since the inner
boundary of the polygonal cavity is also a circle, the spurious eigenvalues appear at
the same locations as those of the annular case.

(c) Eccentric cavity

The eccentric cavity is shown in ­ gure 20, where the inner and outer radii are r1 =
0:5 m and r2 = 2 m, respectively. We employed the di¬erent methods to determine
the ­ rst ten eigenvalues, as shown in table 4, in which we also list the results of Chen
& Zhou (1993) and FEM (ABAQUS). The results of the singular and hypersingular
BEMs, the CHIEF method, the null-­ eld formulations and the ­ ctitious BEMs agree
well with those of Chen & Zhou (1993) and FEM (ABAQUS). Similarly, the inner
circular boundary dominates the spurious eigenvalues, although it is eccentric. The
spurious eigenvalues are identical to those of the annular cavity.
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Table 4. The ¯rst ten eigenvalues of the Helmholtz eigenproblem for the eccentric case
using di® erent methods

1 2 3 4 5 6 7 8 9 10

FEMa (ABAQUS) 1.73 2.13 2.45 2.76 2.95 3.30 3.34 3.36 3.83 3.84

Chen & Zhou (1993) 1.75 2.14 2.47 2.78 2.97 3.33 3.37 3.38 3.85 3.87

Burton & Miller (1971) 1.74 2.14 2.47 2.78 2.97 3.33 3.37 3.39 3.87 3.87

direct BEM b 1.73 2.13 2.46 2.77 2.95 3.31 3.35 3.37 3.85 3.85

CHIEF b 1.73 2.13 2.46 2.76 2.95 3.31 3.35 3.37 3.84 3.86

null-¯eld formulation b 1.73 2.12 2.45 2.76 2.95 3.31 3.34 3.36 3.83 3.85

¯ctitious BEM b 1.73 2.13 2.45 2.76 2.95 3.31 3.35 3.35 3.86 3.86

aData from Chen et al . (2001c). b Present paper.

9. Concluding remarks

In this paper, we have veri­ ed that the spurious eigensolutions depend on the inner
boundary of a multiply connected problem for both the continuous and the discrete
formulations. The spurious and true eigenmodes for the annular domain were ana-
lytically derived by using the degenerate kernel and the Fourier series expansion.
Singularity-free methods, such as the null-­ eld formulation and the ­ ctitious BEM,
also su¬er from the problem of spurious eigenvalues that depend on the locations of
the collocation points and the ­ ctitious boundaries, respectively. Hence the CHIEF
method and the SVD-updating techniques were employed to overcome the spurious
eigensolutions. The true and spurious modes are found to be the right and left unitary
vectors, respectively, of the four in®uence matrices in the dual BEM. The positions
of the CHIEF points should be chosen inside the inner boundary and must avoid
locating at the point such that Jn(k» ) = 0 and sin n(¿ 1 ¡ ¿ 3) = 0. Also, the criteria
of failure CHIEF points for the null-­ eld formulation and the ­ ctitious BEM are
similar to that of singular and hypersingular BEMs. For singular and hypersingular
BEMs, the null-­ eld approach and the ­ ctitious BEM, the spurious and true eigen-
values were detected successfully by using the SVD-updating techniques and the
Fredholm alternative theorem. In the numerical experiments, three cases showed
that the null-­ eld formulation and the ­ ctitious BEM can obtain accurate results as
well as the singular and hypersingular BEMs do. But the locations of the collocation
points of the null-­ eld formulation and ­ ctitious boundaries of the ­ ctitious BEM
must be chosen carefully, so as to avoid not only the spurious eigenvalue, but also
the ill-posed behaviour. In addition, the e¯ ciency of the CHIEF method is better
than that of the Burton{Miller method since not only is hypersingularity avoided,
but also computation e¬ort is saved. The cases of polygonal and eccentric cavities
also tend to indicate the validity of the proposed methodologies for the problems
with general boundaries.
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