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In this paper, the Cesdro mean technique is applied to regularize the divergent
problem which occurs in ground motion deconvolution analysis in geotechnical
engineering. To deal with this ill-posed problem, we use the corner of the L-curve
as the compromise point to determine the optimal order of Cesiaro mean so that
the high frequency content can be suppressed instead of engineering judgement
using the concept of a cutoff frequency. The fractional order of Cesaro mean has
been derived and used to fulfill this purpose. From the examples shown, it is found
that the wave form including maximum acceleration can be accurately predicted
and that both the high frequency content and divergent results can be avoided by
using the proposed regularization technique.
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NOTATION

the nth term of series

Amplitude of transfer function

Cesaro mean operator of order r with & terms
binomial coefficient

exciting frequency

nth frequency in the Fourier transform
thickness of soil layer

complex wave number

reproducing kernel (Fejer kernel)

total number in Fourier transform

order of Cesaro mean

partial sum

time

transfer function of devonvolution

transfer function of convolution

traction on the ground surface in the time
domain

* Correspondence to J. T. Chen.

T(f)

traction on the ground surface in the frequency
domain

displacement

displacement of the ground surface
contaminated displacement of the ground
surface

displacement of the basement

calculated displacement deconvoluted from #,(f)
Fourier coefficient of w,

Fourier coefficient of u,

Fourier coefficient of u

shear wave velocity of the soil layer

ith weight of Cesaro mean with r order
Gamma function of x

hysteretic damping ratio of the soil layer

1. INTRODUCTION

Inverse problems are presently becoming more impor-
tant in many fields of science and engineering. The
deconvolution problem can be seen as one inverse
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Fig. 1. Single layer soil model.

problem. Sometimes, unreasonable results occur in
deconvolution analysis due to the damping mechanism
and contaminated errors in the input motion. For
example, the SHAKE program’ has too much high
frequency response, and in some cases divergent
results, in deconvolution analysis as mentioned by
Chen.! Mathematically speaking, the deconvolution
problem is ill-posed since the solution is very sensitive
to the given data. This phenomenon will become more
serious when either the deconvolution depth is deeper or
the damping ratio is larger. Although the damping model
of soils is not clearly understood, it is always assumed to
be hysteretic damping in engineering practice. This paper
focuses on a treatment for divergence due to noise. The
material properties are assumed to be known, i.e. the
source identification is considered instead of system
parameter identification. Such a divergent problem
could be avoided by using a cutoff frequency in the
SHAKE program or using by regularization methods.
The former method utilizes a rectangular window to
eliminate all the high frequency contents larger than the
cutoff frequency. Nevertheless, how to choose a suitable
cutoff frequency depends on the engineering judgement in
engineering practice. Furthermore, the side lobe of the
rectangular window is large. To find an optimum window
with a general rule is a key step in solving such problems.
The regularization techniques have been successfully
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Fig. 2. Transfer functions of convolution and deconvolution.

applied to circumvent the influence of noise. For
example, three regularization techniques have been
applied to direct problems by Chen and Hong®™> when
the solution is contaminated with noise. The three methods
can effectively suppress noise propagation.

In this paper, we shall employ one of the regularization
methods, the Cesiro regularization technique® to
circumvent the ill-posed problem. In other words, an
optimum Cesaro window will be introduced. The Cesaro
window can redistribute the amplitude of frequency con-
tent in the system kernel; therefore, an ill-posed problem
can be transformed into a well-posed one by choosing the
appropriate order of the Cesaro mean. The appropriate
order is determined according to the compromise between
regularization error (due to data smoothing) and perturba-
tion error (due to noise disturbance).” The corner of the L-
curve can provide the compromise point and will be
elaborated on later. Finally, two examples, single layer
soil with artificial noises and multiple layer soils at the
LSST site in Lotung, Taiwan with measured data, will be
shown to illustrate the validity of the proposed technique.

2. FORMULATION OF THE DECONVOLUTION
PROBLEM

In general, the deconvolution problem can be described
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Fig. 3. Cesaro window function.



Application of Cesaro mean and the L-curve for the deconvolution problem 363

“r

12+

as shown in Fig. 1, where the boundary condition of
traction 7'(z) and displacement u(¢) in the time domain
or T(f) and U(f) in the frequency domain are
prescribed over the surface of the ground, but the
stress and displacement fields under the ground surface
are both unknown.

Conventionally, as used in SHAKE analysis, decon-
volution analysis is performed in the frequency domain.
We can formulate the associated transfer function to
investigate the problem of high frequency divergency of
this analysis. As a simple example but without loss
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Fig. 5. The original input motion given at the basement level.
(a) Time history. (b) Fourier coefficient spectrum.
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Fig. 4. The reproducing kernel for increasing number N.

of its generality, a homogeneous soil layer underlain
by a horizontally extended basement can be used.
It is assumed that the soil is linearly elastic with
damping of the hysteretic type. For a SH wave vertically
propagating in the soil layer, the frequency domain
transfer function between the surface motion and
basement motion in the frequency domain can be
derived and represented as
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ment motion. (a) Time history. (b) Fourier coefficient spectrum.
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or

(/) :

- cos(K;H,)' @)

The amplitude function is defined by

Agp(f) = T ()] (3)

In the above equation, H; is the thickness of the
soil layer, and K, is the complex wave number
expressed by

_2

K 7

(1+2i)"'" )
where ¥, is the shear wave velocity of soil, £ is the
hysteretic damping ratio of soil, and f is the frequency
of ground excitation.

From eqns (1)—(3), it is seen that T, depends on the
material properties and exciting frequency. When U, (f)
is given, the ground surface response, U,(f), can be
calculated accordingly. This procedure is usually called
the ‘convolution process’, and T,,(f) is ‘the transfer
function of convolution of the soil layer’.

On the other hand, the transfer function of
deconvolution can be defined as
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Fig. 10. Suppressed transfer function of Cesdro order 4.6.
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Fig. 11. Basement motion deconvoluted from the contaminated
ground surface motion by using Cesaro regularization. (a)
Time history. (b) Fourier coefficient spectrum.

or

E)g(f) = COS(KS*HS)‘ (6)
The amplitude function is defined by

Abg(f) = |T}7g(f)| (7)

When U,(f) is given, the basement motion, Uy(f),
can be calculated by

Up(f) = Ug(f) cos(K{" Hy) (8)
and the time domain response, u;(t), can be obtained by
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Fig. 12. Soil profile of the far-field at the LSST site.

Fourier transform represented by
o0
w(t)= Y Up(f)e*™". )
n=-oc
In practical calculation, only the finite length of
summation is taken, represented by

N

up(t) = Y Up(f,) €™ (10)

n=—-N

Comparing eqn (1) with (5), it can be seen that T,
is the inverse of Tp,. A typical relationship of their
amplitude vs frequency is shown in Fig. 2. The
amplitude of convolution transfer function is greater
than 1.0 in the low frequency range and decreases
rapidly as the frequency becomes higher. On the other
hand, the amplitude of deconvolution transfer function
is lower than 1.0 in the low frequency range and
becomes very large as the frequency becomes
higher. Chen et al.'® defined the least frequency which
makes the amplitude of deconvolution transfer function
always larger than one as the threshold frequency, shown
in Fig. 2. Since the transfer function of convolution
analysis has confined values, no serious errors will
occur when the input motion is contaminated with
noise. However, the deconvolution transfer function
has very high amplitudes in the range where the
frequency is much larger than the threshold frequency.
This means that the transfer function can amplify any
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history. (b) Fourier coefficient spectrum.
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Fig. 15. The constructed L-curve of the multilayered case.

high frequency noise of the contaminated input motion
in deconvolution analysis.

In practical solutions, very few downhole records are
available. Therefore, deconvolution analyses are usually
used to calculate underground motions. The problem of
high frequency amplification can not be avoided in the
analysis. The next section will introduce a new
regularization method to overcome the difficulty of
high frequency amplification in deconvolution analysis.

3. REGULARIZATION WITH THE CESARO
MEAN TECHNIQUE

For the above mentioned ill-posed problem, regulariza-
tion techniques, e.g. the Tikhonov method,® are often
employed to transform the original problem into a well-
posed one. The Tikhonov method can be used when the
system is formulated in terms of convolution type;
however, it will introduce a double integral in the
formulation. To avoid a large number of calculations,
the frequency domain approach is used in this paper, and
hysteretic damping can be easily included. Therefore, we
will propose a new regularization technique based on the
theory of the Cesaro mean to regularize the ill-posed
problem in the frequency domain. In the mathematical
modelling for a physical problem, the series representation
or integral representation for the solution is often assumed,
and the governing equation in another domain can be
equivalently obtained. Because some errors or the Dirac
Delta function may be included in the solution, contami-
nated errors in the representation for solution will be present.
In order to represent the solution more accurately, a
regularization technique can reproduce the unknown solu-
tion more approximately. This is the reason why the Cesaro
mean is related to the reproducing kernel (Fejer kernel).?
The general Cesaro mean is defined as®~>

k
= C(k, r){z_: a,,}

ClH—r lS +Ck+r 2 _.+Cr'_1.§'k_1+crr:11sk

Crk+r

(11)

where C(k,r) is the operator of the Cesaro mean of
rth order, r is an integer, C¥ = k!/(rl(k — r)!) and the
partial sum is

k
S = Za,,(x, f). (12)
n=0
The C(k, 1) mean reduces to the conventional Cesdro sum:
k
_ _Sotsit oSt S
Sk—C(k,l){nZ:()a,,}_ T
(13)

For efficiency of computation, the s; terms can be
changed to g; terms, and eqn (11) can be expressed as

k k
1
Sk=C(k’l){E an}Em E (k—n+l)a,,
n=0 n=0

(14)

Similarly, the C(k,2) Cesaro mean is

smera e}

il + Cfsy +CF s+ + Ol + Clsy

C2k+2
(k- sg ks 4+ + 251+ 5 (15)
B 0.5(k +1)(k+2)
or, in terms of a;,
k
=Clk, 2){Zan}
n=0
L S 2)a
(k+1)(k+2)z(k Dk —n+2)a,
(16)
For the general integer order r, we have
k k
B _ (K k+r—n)
$ = Clk, ’){;f’"} = ;(k )kt
(17)

Because the order of the Cesaro mean is the regularized
parameter, fractional orders of the Cesaro mean are
necessary to construct a complete L-curve, which will
be mentioned in the following section. For the case of
noninteger order, the Cesaro mean can be defined as

k k
SkEC(k,r){Za,,} :Zw,fa,, (18)
n=1 n=1

in which the weight is represented by
w,:F(k+l)I‘(k+r—n+ 1)
" Tk-n+1)Dk+r+1)
where I'(x) is the Gamma function of x. Equation (19)
can be reduced to the weight in eqn (17) where r is an

(19)
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integer. To understand the effect of the weight for each
basis a,, the Cesaro means of order 1, 5, 10, 20, 100
are shown in Fig. 3. It is seen that the Cesaro mean has
the physical meaning of a window function. The
larger the order is, the lower is the weighting of a,
treated. Therefore, if the Cesaro window is applied for
frequency domain deconvolution analysis, the amplitude
of high frequency content can be suppressed, and the
solution will be insensitive to the high frequency input
error. From the viewpoint of signal processing, this
method is the model of moving average (MA). Applying
the Cesaro mean to deconvolution analysis, eqn (10) can
be replaced by

n=N

w(®) = Y wiUy(f,) ™ (20)
n=-N
where u,(t) is a regularized solution instead of the
unregularized solution u,(¢) in eqn (10). Using the
Fejér theorem,'? eqn (20) can be transformed to

1 ™
w() =52 | Kle—rhu(r)dr 1)
2 )
where the reproducing kernel Ky(t — 1) is
n=N .
Ky(t=7)= > wye?™(2), (22)
n=—N

For the case of order 1, the reproducing kernel is reduced
to the Fejér kernel as shown below:
1 sin®(N+1)(e=7)/2)
Ky(t—7)= . 23
w( ) (N+1)  sin®((t—71)/2) (23)
The diagram of the reproducing kernel is shown in
Fig. 4 for increasing values of N. In application in
the frequency domain, eqn (20) is used instead of
eqn (21).

4. THE L-CURVE AND ITS APPLICATIONS

Most numerical methods for treating ill-posed problems
seek to overcome the problems associated with an
ill-conditioned system by replacing the problem with a
‘nearby’ well-conditioned problem, whose solution
approximates the required solution and, in addition, is
a more satisfactory solution than the ordinary solution.
The latter goal is achieved by incorporating additional
information about the sought after solution, and often
the computed solution should be smooth. Such methods
are called regularization methods, and they always
include a so-called regularization parameter, which
controls the degree of smoothing. Now the order of the
Cesaro mean is chosen as the parameter of smoothness.
A very convenient way of displaying the judgement of
the optimal parameter is the L-curve, which was first
presented by Lawson and Hanson.’ In the L-curve, the

x-axis is the solution norm, and the y-axis is the residual
norm. The former is the index of how smoothly the
solution is treated, and the latter is the distance index
between the predicted output and the real output. In the
deconvolution of site response analysis, the order of the
Cesaro mean can be the index of smoothing, and the
maximum acceleration of predicted output motion can
be the index of closeness to the real output, i.e. using
the order of the Cesaro mean as the x-axis and the
maximum acceleration as the y-axis. In this way, we
can easily get a compromise between the regularization
errors due to data smoothing and perturbation errors
in measurements or other noise. According to the
L-curve, the corner region is the appropriate choice for
regularization parameter, i.e. the order of the Cesaro
mean.

5. NUMERICAL EXAMPLE — SINGLE LAYER
SOIL MODEL WITH ARTIFICIAL RANDOM
ERRORS

To illustrate application of the Cesaro mean and the
L-curve on the ground motion deconvolution problem,
the single layer ground model, shown in Fig. 1, is chosen
as a representation example. It is assumed that the soil
layer has a thickness of 50 m, a mass density of 2.0 g/cm®,
a shear wave velocity of 200m/s and a hysteretic
damping ratio of 10%. According to eqns (1)—(7), the
amplitude for convolution and deconvolution transfer
functions can be plotted as shown in Fig. 2. From this
figure, it can be seen that in the first, the second and the
third modal frequencies of the system are located in the
valleys of the amplitude curve of the deconvolution
transfer function, which are equal to 1, 3 and SHz,
respectively. However, for frequencies larger than the
threshold frequency (about 5.4 Hz), the deconvolution
transfer function always has an amplitude greater than 1,
and this increases very rapidly for higher frequencies.
This is the cause of high frequency amplification in
deconvolution analysis. Under these circumstances,
even a small amount of high frequency noise contamina-
tion in the input motion will result in serious error in the
deconvoluted motion.

Suppose a normalized basement motion i, (z) is given
as shown in Fig. 5(a). Its Fourier amplitude is shown in
Fig. 5(b). The maximum acceleration of i1 (¢) is set equal
to 0.1 g. By the direct convolution technique, the surface
motion, i,(t), and its Fourier spectrum can be obtained
as shown in Fig. 6. The maximum acceleration of i, (¢) is
0.1615 g. Comparing Fig. 5(b) with 6(b), it is found that
the surface motion has larger amplitude in the low
frequency range, concentrated at the modal frequencies
of 1 and 3Hz, and less high frequency content as
compared to the basement motion.

To see the influence of high frequency noise in decon-
volution analysis, the obtained surface motion, ii,(t), was
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superimposed by 3% random error to simulate the
probable errors in measurement.'’ The contaminated
surface motion, u#,(¢), and its Fourier spectrum are
shown in Fig. 7(a) and 7(b), respectively. To the naked
eye, the difference between #,(r) and i,(r) can not be
seen. When the contaminated surface motion, #,(7), is
used for deconvolution analysis if no regularization is
considered, the basement motion obtained is as shown in
Fig. 8. Too much high frequency content is present, and
the solution obtained is unrealistic.

When the above mentioned Cesaro mean regulariza-
tion technique is applied in deconvolution analysis with
contaminated surface motion, i,(r), we can construct
the relationship between the maximum basement
acceleration obtained and the order of the Cesaro
mean, i.e. the L-curve, as shown in Fig. 9. In construct-
ing the L-curve, the integer order of the Cesaro mean is
used for the whole region at first, and the noninteger
orders are then applied for the region near the corner of
the L-curve to reduce the computational effort. As
expected from a mathematical point of view, a corner
is present in the L-curve. When the Cesaro order is
at the left hand side of the corner, the maximum
acceleration grows very fast and deviates very far from
the accurate basement motion. If the Cesaro order is
larger than the corner value, the lower frequency content
of the deconvoluted motion will be over-decayed,
and the maximum acceleration will become smaller.
To find a compromise between the smoothing and
perturbation errors, the corner of the L-curve is chosen
as the optimal point. The appropriate order is 4.6.
The original and regularized amplitude of transfer
functions are shown in Fig. 10. It can be found that the
low frequency region of the original transfer function is
just slightly reduced by using the Cesaro window while
the high frequency region of the transfer function has
been suppressed very much. Therefore, the decon-
volution result will be regularized to approximate the
exact solution of ii,(¢) as shown in Fig. 11. Comparing
Fig. 11 with Fig. 5, the two motions are almost the same
except for a small difference in high frequency content.
The application of the Cesaro mean in conjunction
with the L-curve for the deconvolution problem is
satisfactory.

6. NUMERICAL EXAMPLE — MULTIPLE LAYER
SOIL MODEL WITH MEASURED DATA

In this section, the deconvolution analysis of the multi-
layered soil profile in Lotung, Taiwan, will be examined.
The unregularized and regularized results computed by
the SHAKE program will be compared with measured
data from down-hole records from the LSST testing site
in Lotung, Taiwan.

The soil profile of the farfield at the LSST site was
simplified to four layers as shown in Fig. 12, and the soil

properties of shear wave velocities and damping ratios
were deduced from the acceleration records measured
by using the spectral ratio method in the study of Chen.'
These properties represent the equivalent parameters in
the earthquake of 20 May, 1986 due to the nonlinear
behavior of the soils. Station FA1-5 is located on the
ground surface, and the downhole array of DHBO06,
DHBI11, DHB17 and DHB47 is arrayed below the
ground surface at depth 6, 11, 17 and 47m. The NS
component of station FA1-5NS in the earthquake
of 20 May, 1986 was selected to be input motion. The
regularized and unregularized motions underground
were compared with the measured data of down-hole
stations for the same event.

The time history and Fourier spectrum of the FAl-
5NS component are shown in Fig. 13. The wave form
from Fig. 13(a) shows a major shock of about 0.2g at
time 11.3s and periodic vibration between time 20 and
35s. Figure 13(b) shows that the major frequency con-
tents are lower than 5Hz, and that the minor frequency
contents are spread over 5-20 Hz. There is only a small
contribution for frequencies larger than 20 Hz. The time
histories of the down-hole array are shown in the first
column of Figs 14(a) and 16(a), the Fourier spectra are
shown in the first column of Figs. 14(b) and 16(b), and
the wave forms are similar to FA1-5NS in Fig. 13(a) with
lower amplitude and lower frequency contents. This
phenomenon indicates that the ground record is highly
contaminated with noise, which might not be convoluted
from the basement. Based on the measured data at
FA1-5NS as input motion, both regularized and
unregularized solutions of the down-hole array can be
deconvoluted by the SHAKE program in conjunction
with or without the proposed regularization technique.

The unregularized deconvoluted results are shown in
the second column of Fig. 14. Figure 14(a) shows that
tremendous errors occur in the motions at depths greater
than 6m. These errors come from high frequency
contents as shown in Fig. 14(b). It shows that the
frequency contents are similar to the measured data
while the high frequency contents deviate greatly
with increasing depth. The tendency in this case is the
same as that found by Chen.! From the results of
unregularized deconvolution analysis, the importance of
the regularization technique is more obvious, and the
results of regularized analysis are shown in the following.

The regularization technique is incorporated into the
SHAKE program to modify the transfer function of
deconvolution. The L-curve is constructed according to
the max acceleration at the deepest station, DHB47, as
the y axis. The L-curve is shown in Fig. 15, and the order
at the corner of L-curve is 4.4. The regularized results
using Cesaro order 4.4 are shown in the second column
of Fig. 16(a) and 16(b). From Fig. 16(a), we can find that
the wave form can be simulated satisfactorily in com-
parison with the measured data when the depth of
calculation is not greater than 17m. Although the
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regularized results at station DHB47 are similar to the
measured data including maximum acceleration and
wave form, a few high frequency contents are still
amplified as shown in Fig. 16(b). Comparing Fig. 16(b)
with Fig. 14(b), we find that the high frequency contents
have been suppressed by the Cesaro mean.

7. CONCLUSIONS

The Cesaro regularization technique presented in this
paper, together with the L-curve, plays a role in deter-
mining the optimal window which can maintain the
system characteristics and make the system insensitive
to the contaminating noise. Therefore, the long standing
abstrusity of determining the window by engineering
judgement is solved by a theoretical window in conjunc-
tion with the L-curve. Two examples, a numerical case
with artificial errors and a field case with data measured
in Lotung, Taiwan, have been given to demonstrate the
validity of the proposed method.
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