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Abstract. Phillips and his associates obtained a series of experimental data from thin-
walled tubular specimens of commercially pure aluminium 1100-0 at room and at elevated
temperatures. These data were neatly recoded in many aspects, executed faithfully in stress-
controlled experiments and well known already for five decades; however, modeling these
experimental data encountered either tremendous difficulties or over complications regardless of
various attempts. In this paper selecting prominent test evidences based upon experiences
on aluminium alloy Al6061 gained in our lab [ASCE Journal of Engineering Mechanics
148(6):04022027, 2022] over the course of the years, we created a three-dimensional tensor
model of flow elastoplasticity, grasping all axial-torsional experimental features reported in the
literature; in particular, in Phillips et al. at room and at elevated temperatures. For each
temperature the model needs a total of 8 material constants in addition to Young’s modulus
and shear modulus and presents an evolving cubic distortion yield hypersurface, which is
articulated with two Mises hyperspheres, characteristic of internal symmetry of two elements of
the projective proper orthochronous Poincare group in the plastic phase. Associated with each
Mises hypersphere in stress space is a normality plastic flow rule of mixed-exp-AF, referring
to a combined isotropic-kinematic rule of hardening-softening, which combines the isotropic
exponential rule of degree 2 and the kinematic rule of Armstrong-Frederick. By using the model
and employing Lie group theory, closed-form exact solutions are derived and used to identify
a unique set of parameters for fitting successfully evolving shapes of yield surfaces with clear
physical meaning.
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1. Introduction
The paper presents a flow elastoplastic model and investigates the temperature effect in thermo-
elasto-plasticity, utilizing the theory of Lie groups (Lorentz group, Poincare group, projective
groups and their Lie algebras) to derive closed-form exact solutions in the plastic state and
elastic solutions in the elastic state. By incorporating flow elastoplastic models in the place
of linear elasticity, we provides the automatic on-off shift capability of plasticity and elastic
unloading solution [1].

The flow elstoplastic model we established is an evolving cubic distortion yield surface
together with a combined isotropic-kinematic rule of hardening-softening, which combines
the isotropic exponential rule of degree 2 and the kinematic rule of Armstrong-Frederick.
With a total of 8 material constants in addition to Young’s modulus and shear modulus our



model successfully predicts axial-torsional strain-controlled experimental data obtained in our
NTU lab [2] and also the well-known stress-controlled prestress experimental data at room
temperature (70◦F = 21◦C) of Phillips and Tang [5, 4]. The present paper further investigates
the experimental data at room (70◦F) and at elevated temperatures (151◦F, 227◦F, 267◦F)
[5, 6, 7].

The paper in fact briefly reports a long journey through experiments, identification, and
development of modeling experimental data.

2. Flow elastoplastic model
Let us propose the following model :
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Here ϵ is the strain tensor and σ is the stress tensor; e and s are their respective deviatoric
parts. tr stands for trace. 1 is the identity tensor whereas 0 denotes the zero tensor. The
positive real numbers K, G, and E are the bulk modulus, shear modulus, and Youngs modulus,
respectively. Let the superscript α represent two copies l, s; namely, the superscript l signifies
large hypersphere or longitudinal, long range, whereas the superscript s is small hypersphere
or shear, short range. The superscripts e and p = elastic and plastic, respectively; and the
subscripts a and b = active and back, respectively.

The proposed model slightly adjusts and extends the validity of our 2022 model [2], which
proves fitting well the strain-controlled axial-torsional experimental data performed in our lab
and supported by (NSC, MOST) NSTC for more than a decade.

We first combine Eqs. (7), (9), and (10) to obtain the key equation for the deviatoric stress:
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ṡαa +

kαp λ̇
α

Rα
∞

sαa , (13)



which on multiplying by sαTa and substituting (10) renders
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so that the formula for λ̇α is
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The sufficient and necessary condition for using the formula can be proved rigorously. The
slight adjustment occurs on the innocent equations (6) and (7); however, the outcome becomes
not only strain-controlled but also stress-controlled are all applicable. The delicate logical details
will be described elsewhere.

The flow elstoplastic model we established is an evolving cubic distortion yield surface
together with a combined isotropic-kinematic rule of hardening-softening, which combines the
isotropic exponential rule of degree 2 and the kinematic rule of Armstrong-Frederick. With
a total of 8 material constants in addition to Young’s modulus and shear modulus our model
successfully predicts axial-torsional strain-controlled experimental data obtained in our NTU
lab [2] and also successfully predicts the well-known axial-torsional stress-controlled prestress
experimental data at room temperature by Phillips and Tang [5, 4] obtained five decades ago.
It cannot be overemphasized that the data were neatly and carefully recoded but has long been
lacking a model (before our effort). The present paper further investigates the experimental
data at elevated temperatures [5, 6, 7].

3. Closed-form exact solutions by Lie group theory
As pointed out by Hong and Liu [1] there are two and only two phases: either the off phase (the
elastic state) or the on phase (the elastoplastic state). Logically it is expressed as follows.λ̇α =
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In the following we convert Euclidean space Rn to Minkowski spacetime Rn,1. As a result,
non-homogeneous coordinates turn out to be homogeneous coordinates and non-linear equations
become linear equations, illustrating proper orthochronous Lorentz group SOo(n, 1) and its Lie
algebra.

Convert (14) to be
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Once λ̇α is found, we combine (17) and (18) to define Minkowski spacetime :
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where the square matrix is called the control matrix A.
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where aα = cosh( (t−t1)∥sαa ∥
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Thus, we obtain the closed-form exact solutions as follows.
For the active deviatoric stress tensors,
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For the back deviatoric stress tensors,
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For the equivalent plastic strain,
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4. Temperature effect

Table 1. For each temperature a unique set of material constants along an entire path however
complicated in stress space.
Temp. E Rl

∞ Rs
∞ rl∞ rs∞ G klp ksp ηl ηs

70◦F 10845 0.7521 0.4177 -8.5995 -15.6683 4077 65268 559724 11.6377 26.4252
151◦F 10526 0.5146 0.3503 -11.6802 -18.8306 3957 53885 407189 10.2215 16.6686
227◦F 10227 0.3615 0.2381 -17.9214 -27.5025 3844 48834 398506 7.8491 13.1810
267◦F 10069 0.2771 0.1535 -20.9339 -27.5025 3785 41003 353641 5.3040 10.5451



Figure 1. First pull/apply axial stress from (a) initial yield surface (b) 1st subsequent yield
surface (c) 2nd s.y.s. (d) 3rd s.y.s. to (e) 4th s.y.s. and then twist/apply additional torsional
stress from (f) axial-torsional subsequent yield surface (g) axial-torsional 2nd s.y.s. to (h) axial-
torsional 3rd s.y.s.; temperatures increase, sizes decrease.
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