Dynamics
(interior problem)
|
J. T. Chen, I. L. Chen, K. H. Chen, Y.
T. Lee, Y. T. Yeh, 2004, A
meshless method for free vibration analysis of circular and rectangular
clamped plates using radial basis function
|
J. T. Chen, I. L. Chen, K. H. Chen, Y.
T. Lee, 2003, Comments on "Free vibration
analysis of arbitrary shaped plate with clamped edges using wave-type
function"
|
J. T. Chen, Y. T. Lee, I. L. Chen and
K. H. Chen, 2004, Mathematical analysis and
treatment for the true and spurious eigenequations of circular plates in the
meshless method using radial basis function, J. Chinese Institute of
Engineers, Vol.27, No.4, pp.547-561.
|
J. T. Chen, S. Y. Lin, K. H. Chen and
I. L. Chen, 2004, Mathematical analysis and
numerical study of true and spurious eigenequations for free vibration of
plates using real-part BEM, Computational Mechanics, Vol.34, No.3,
pp.165-180.
|
J. T. Chen, S. Y. Lin, Y. T. Lee, I. L.
Chen, 2006, Mathematical analysis
and numerical study of true and spurious eigenequations for free vibration of
plates using imaginary-part BEM, Journal of Sound and Vibration.
|
J. T. Chen, S. Y. Lin, Y. T. Lee, I. L.
Chen, 2006, Mathematical analysis
and numerical study for free vibration of annular plates using BIEM and BEM, International Journal for
Numerical Methods in Engineering
|
W. M. Lee, J. T. Chen, Y. T. Lee, 2007,
Free vibration analysis of circular plates with multiple circular holes using
indirect BIEMs, Journal of Sound and Vibration. (personal), (public)
|
W. M. Lee, J. T. Chen, 2008, Null-field
integral equation approach for free vibration analysis of circular plates
with multiple circular holes.(proof)
(in Press) (Final)
|
W. M. Lee, J. T. Chen, 2008, Analytical study and numerical
experiments o true and spurious eigensolutions of free vibration of circular
plates using real-part BEM, Engineering Analysis with Boundary Elements
|
W. M. Lee, J. T. Chen, 2010,
Eigensolutions of a circular flexural plate with multiple circular holes by
using the direct BIEM and addition theorem (proof) (final)
|
W. M. Lee, J. T. Chen, 2011, Free
Vibration Analysis of a Circular Plate With Multiple Circular Holes by Using
Indirect BIEM and Addition Theorem (proof) (final)
|
|
板自由振動 |
W. M. Lee and J. T. Chen, 2011, Free
vibration analysis of a circular plate with multiple circular holes by using
addition theorem and indirect BIEM, ASME. Journal of Applied Mechanics,
Vol.78, pp.1-10. |
W. M. Lee and J. T. Chen, 2010,
Eigensolutions of a circular plate with multipole circular holes by using
the direct BIEM and addition theorem, Engineering Analysis with Boundary
Elements, Vol.34, pp.1064-1071. |
W. M. Lee and J. T. Chen, 2009, Free
vibration analysis of a circular plate with multiple circular holes by using
multipole Trefftz method, Computer Modeling in Engineering Science, Vol.50,
No.2, pp.141-159. |
W. M. Lee and J. T. Chen, 2008,
Null-field integral equation approach for free vibration analysis of
circular plates with multiple circular holes, Computational Mechanics,
Vol.42, pp.733-747. |
W.
M. Lee and J. T. Chen, 2008, Analytical study and numerical experiments o
true and spurious eigensolutions of free vibration of circular plates using
real-part BEM, Engineering Analysis with Boundary Elements, Vol.32,
pp.368-387, 2008. |
W.
M. Lee, J. T. Chen and Y. T. Lee, 2007, Free vibration analysis of circular
plates with multiple circular holes using indirect BIEMs, Journal of Sound
and Vibration, Vol.304, pp.811-830. |
J. T. Chen, S. Y. Lin, I. L. Chen and
Y. T. Lee, 2006, Mathematical analysis and numerical study of true and
spurious eigenequations for free vibration of plates using imaginary-part
BEM, Journal of Sound and Vibration, Vol.293, pp.380-408. |
J. T. Chen, S. Y. Lin, I. L. Chen and
Y. T. Lee, 2006, Mathematical analysis and numerical study for free
vibration of annular plates using BIEM and BEM, Int. J. Numer. Meth. Engng.,
Vol.65, pp.236-263.
|
J. T. Chen, Y. T. Lee, I. L. Chen and
K. H. Chen, 2004, Mathematical analysis and treatment for the true and
spurious eigenequations of circular plates in the meshless method using
radial basis function, J. Chinese Institute of Engineers, Vol.27, No.4,
pp.547-561. |
J. T. Chen, I. L. Chen. K. H. Chen, Y.
T. Yeh and Y. T. Lee, 2004, A meshless method for free vibration of
arbitrarily shaped plates with clamped boundaries using radial basis
function, Engineering Analysis with Boundary Elements, Vol.28, No.5,
pp.535-545. |
J.
T. Chen, S. Y. Lin, K. H. Chen and I. L. Chen, 2004, Mathematical analysis
and numerical study of true and spurious eigenequations for free vibration
of plates using real-part BEM, Computational Mechanics, Vol.34, No.3,
pp.165-180.
|
|
Dynamics
(exterior problem)
|
W. M. Lee and J. T. Chen, 2009, Scattering of flexural wave in
thin plate with multiple inclusions by using null-field integral equation
approach, Journal of Sound and Vibration, Accepted.(proof)(final)
|
Scattering
of flexural wave in thin plate with multiple holes 2 by using the null-field
integral equation approach (李為民 2008) (proof)
(final)
|
W. M. Lee and J. T. Chen, 2010, Scattering of
flexural wave in a thin plate with multiple circular holes by using the
multipole Trefftz method, International Journal of Solids and Structures, Accepted, (final)
|
|
板相關論文
|
Membrane and plate papers by Lee and
Chen (2010)-IJNME.ppt
|
Statics
|
On the
equivalence of the Trefftz method and method of fundamental solutions for
Laplace and biharmonic equations (2007)
|
J. T. Chen, C. S. Wu and K. H. Chen,
2005, A study of free terms for plate
problems in the dual boundary integral equations, Engineering Analysis
with Boundary Elements, Vol.29,pp.435-446,2005.
|
J. T. Chen, C. S. Wu, K. H. Chen, Y. T.
Lee, 2006, Degenerate scale for the analysis of
circular thin plate using the boundary integral equation method and boundary
element method, Computational Mechanics.
|
Null-field
integral equation approach for plate problems with circular boundaries, ASME
Journal of Applied Mechanics, 2006
|
J. T. Chen, W. M. Lee, H. Z. Liao,
Discussion: “Isotropic
Clamped-Free Thin Annular Circular Plate Subjected to a Concentrated Load” (Adewale, A. O., 2006, ASME J. Appl. Mech., 73,
pp. 658–663),
2008
|